首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
With the impressive record power conversion efficiency (PCE) of perovskite solar cells exceeding 23%, research focus now shifts onto issues closely related to commercialization. One of the critical hurdles is to minimize the cell‐to‐module PCE loss while the device is being developed on a large scale. Since a solution‐based spin‐coating process is limited to scalability, establishment of a scalable deposition process of perovskite layers is a prerequisite for large‐area perovskite solar modules. Herein, this paper reports on the recent progress of large‐area perovskite solar cells. A deeper understanding of the crystallization of perovskite films is indeed essential for large‐area perovskite film formation. Various large‐area coating methods are proposed including blade, slot‐die, evaporation, and post‐treatment, where blade‐coating and gas post‐treatment have so far demonstrated better PCEs for an area larger than 10 cm2. However, PCE loss rate is estimated to be 1.4 × 10?2% cm?2, which is 82 and 3.5 times higher than crystalline Si (1.7 × 10?4% cm?2) and thin film technologies (≈4 × 10?3% cm?2) respectively. Therefore, minimizing PCE loss upon scaling‐up is expected to lead to PCE over 20% in case of cell efficiency of >23%.  相似文献   

2.
The high-quality perovskite film with few defects plays an important role in the power conversion efficiency (PCE) and long-term stability of perovskite solar cells. Here, an efficient strategy is proposed to eliminate Pb0 and passivate Pb2+ simultaneously by employing a stable polyoxometalate-based material CoW12@MIL-101(Cr) in the precursor solution of perovskite. The controllable oxidation ability of CoW12 is optimized through the interaction with metal–organic frameworks, resulting in a doped perovskite film with regular morphology, large grain size, and low defects density. The solvent effects and formation of intermediate materials in the precursor solution are further investigated by an in situ thermogravimetry-Fourier transform infrared spectroscopy analysis. In addition, the champion doped-device showed enhanced PCE to 21.39% and excellent stability, maintaining 85% and 89% of the original PCE after heating at 85 °C in N2 atmosphere and stored in ambient conditions (25 °C, 40% humidity) for 1000 h, respectively.  相似文献   

3.
Perovskite solar cells (PVSCs) are promising photovoltaic technologies for realizing power sources with outstanding power conversion efficiency (PCE) and low‐cost properties. However, the extraordinary photovoltaic performance can be maximized only if an extremely stabilized device structure is developed. Here, a novel glued poly(ethylene‐co‐vinyl acetate) (EVA) interfacial layer is introduced to fabricate highly efficient and stable PVSCs with excellent waterproofness and flexibility. This strategy can effectively passivate the perovskite surface, reduce defect density, and balance charge transfer, which leads to a champion PCE of 19.31% for a 0.1 cm2 device and 11.73% for a 25 cm2 solar module. More importantly, the formation of a glued EVA thin layer on the surface of perovskite can inhibit ionic migration to the Ag electrode, form favorable interfacial contact and adhesive interaction with the perovskite/[6,6]‐phenyl‐C61‐butyric acid methyl ester to sustain mechanical bending, and produce significant waterproofness from moisture invasion, thus facilitating improvement in the operational stability of the PVSCs. The EVA‐treated PVSCs exhibit superior PCE values of 15.12% for a flexible device (0.1 cm2) and 8.95% for a flexible module (25 cm2), as well as over 85% retention after 5000 bending cycles, which opens up a new strategy for the practical application of PVSCs in portable and wearable electronics.  相似文献   

4.
Recent progress of vapor-deposited perovskite solar cells (PSCs) has proved the feasibility of this deposition method in achieving promising photovoltaic devices. For the first time, it is probed the versatility of the co-evaporation process in creating perovskite layers customizable for different device architectures. A gradient of composition is created within the perovskite films by tuning the background chamber pressure during the growth process. This method leads to co-evaporated MAPbI3 film with graded Fermi levels across the thickness. Here it is proved that this growth process is beneficial for p-i-n PSCs as it can guarantee a favorable energy alignment at the charge selective interfaces. Co-evaporated p-i-n PSCs, with different hole transporting layers, consistently achieve power conversion efficiency (PCE) over 20% with a champion value of 20.6%, one of the highest reported to date. The scaled-up p-i-n PSCs, with active areas of 1 and 1.96 cm2, achieved the record PCEs of 19.1% and 17.2%, respectively, while the flexible PSCs reached a PCE of 19.3%. Unencapsulated PSCs demonstrate remarkable long-term stability, retaining ≈90% of their initial PCE when stored in ambient for 1000 h. These PSCs also preserve over 80% of their initial PCE after 500 h of thermal aging at 85 °C.  相似文献   

5.
All organic charge‐transporting layer (CTL)‐featured perovskite solar cells (PSCs) exhibit distinct advantages, but their scaling‐up remains a great challenge because the organic CTLs underneath the perovskite are too thin to achieve large‐area homogeneous layers by spin‐coating, and their hydrophobic nature further hinders the solution‐based fabrication of perovskite layer. Here, an unprecedented anchoring‐based coassembly (ACA) strategy is reported that involves a synergistic coadsorption of a hydrophilic ammonium salt CA‐Br with hole‐transporting triphenylamine derivatives to acquire scalable and wettable organic hole‐extraction monolayers for p–i–n structured PSCs. The ACA route not only enables ultrathin organic CTLs with high uniformity but also eliminates the nonwetting problem to facilitate large‐area perovskite films with 100% coverage. Moreover, incorporation of CA‐Br in the ACA strategy can distinctly guarantee a high quality of electronic connection via the cations' vacancy passivation. Consequently, a high power‐conversion‐efficiency (PCE) of 17.49% is achieved for p–i–n structured PSCs (1.02 cm2), and a module with an aperture area of 36 cm2 shows PCE of 12.67%, one of the best scaling‐up results among all‐organic CTL‐based PSCs. This work demonstrates that the ACA strategy can be a promising route to large‐area uniform interfacial layers as well as scaling‐up of perovskite solar cells.  相似文献   

6.
While there is promising achievement in terms of the power conversion efficiency (PCE) of perovskite solar cells (PSCs), long-term stability has been considered the main obstacle for their practical application. In this work, the authors demonstrate the small monomer 2-(dimethylamino) ethyl methacrylate (DMAEMA) with unsaturated carboxylic acid ester bond in the antisolvent for perovskite formation to improve the PCE and stability. The results show that DMAEMA is self-polymerized and uniformly distributed in the film, contributing to the improved crystallinity of the perovskites. Equally important, it is found that there are newly established interactions of Pb2+ and DMAEMA, and iodine and ternary amine between DMAEMA and perovskites, which improves the uniformity of the lead (II) iodide vertical distribution along with the films and thus phase stability, as well as largely decreases defects density in the film. Overall, the inverted PSCs with DMAEMA exhibit a open-circuit voltage of 1.10 V, short-circuit current of 23.86 mA cm?2, fill factor of 0.82, and finally PCE reaches 21.52%. Meanwhile, the PSC stability is significantly improved due to the inhibition of the formation of iodine, reduction of the uncoordinated Pb2+, and suppression of phase segregation.  相似文献   

7.
The grain boundaries (GBs)/surface defects within perovskite film directly impede the further improvement of photoelectric conversion efficiency (PCE) and stability of planar perovskite solar cells (PSCs). Herein, 3D phytic acid (PA) and phytic acid dipotassium (PAD) with polydentate are explored to synchronously passivate the defects of perovskite absorber directly in multiple spatial directions. The strong electron-donating groups ( H2PO4) in the PA molecule afford six anchor sites to bind firmly with uncoordinated Pb2+ at the GBs/surface and modulate perovskite crystallization, thus enhancing the quality of perovskite film. Particularly, PAD containing an additional (K→PO) push–pull structure promotes the dominant coordination of phosphate group (PO) with Pb2+ and passivates halide anion defects due to the complexation of potassium ions (K+) with iodide ions (I-). Consequently, the PAD-complexed PSCs deliver a champion PCE of 23.18%, which is remarkably higher than that of the control device (19.94%). Meanwhile, PAD-complexed PSCs exhibit superior moisture and thermal stability, remaining 79% of their initial PCE after 1000 h under continuous illumination, while the control device remain only 48% of their PCE after 1000 h. This work provides important insights into designing multifunctional 3D passivators for the purpose of simultaneously enhancing the efficiency and stability of devices.  相似文献   

8.
Perovskite solar cell (PSC) has attracted great attention due to its high power conversion efficiency (PCE), low cost and solution processability. The well-designed interface and the modification of electron transport layer (ETL) are critical to the PCE and long-term stability of PSCs. In this article, a fused-ring electron acceptor is employed as the interfacial material between TiO2 and the perovskite in rigid and flexible PSCs. The modification improves the surface of TiO2, which decreases the defects of ETL surface. Moreover, the modified surface has lower hydrophilicity, and thus is beneficial to the growth of perovskite with large grain size and high quality. As a result, the interfacial charge transfer is promoted and the interfacial charge recombination can be suppressed. The highest PCE of 19.61% is achieved for the rigid PSCs after the introduction of ITIC, and the hysteresis effect is significantly reduced. Flexible PSC with ITIC obtains a PCE of 14.87%, and the device stability is greatly improved. This study provides an efficient candidate as the interfacial modifier for PSCs, which is compatible with low-temperature solution process and has a great practical potential for the commercialization of PSCs.  相似文献   

9.
Composition engineering is a particularly simple and effective approach especially using mixed cations and halide anions to optimize the morphology, crystallinity, and light absorption of perovskite films. However, there are very few reports on the use of anion substitutions to develop uniform and highly crystalline perovskite films with large grain size and reduced defects. Here, the first report of employing tetrafluoroborate (BF4?) anion substitutions to improve the properties of (FA = formamidinium, MA = methylammonium (FAPbI3)0.83(MAPbBr3)0.17) perovskite films is demonstrated. The BF4? can be successfully incorporated into a mixed‐ion perovskite crystal frame, leading to lattice relaxation and a longer photoluminescence lifetime, higher recombination resistance, and 1–2 orders magnitude lower trap density in prepared perovskite films and derived solar cells. These advantages benefit the performance of perovskite solar cells (PVSCs), resulting in an improved power conversion efficiency (PCE) of 20.16% from 17.55% due to enhanced open‐circuit voltage (VOC) and fill factor. This is the highest PCE for BF4? anion substituted lead halide PVSCs reported to date. This work provides insight for further exploration of anion substitutions in perovskites to enhance the performance of PVSCs and other optoelectronic devices.  相似文献   

10.
2D perovskites have attracted extensive attention due to their excellent stability compared with 3D perovskites. However, the intrinsic hydrophilicity of introduced alkylammonium salts effects the humidity stability of 2D/3D perovskites. Devices based on longer chain alkylammonium salts show improvement in hydrophobicity but lower efficiency due to the poorer charge transport among various layers. To solve this issue, two hydrophobic short‐chain alkylammonium salts with halogen functional groups (2‐chloroethylamine, CEA+ and 2‐bromoethylamine, BEA+) are introduced into (Cs0.1FA0.9)Pb(I0.9Br0.1)3 3D perovskites to form 2D/3D perovskite structure, which achieve high‐quality perovskite films with better crystallization and morphology. The optimal 2D/3D perovskite solar cells (PSCs) with 5% CEA+ display a power conversion efficiency (PCE) as high as 20.08% under 1 sun irradiation. Because of the notable hydrophobicity of alkylammonium cations with halogen functional groups and the formed 2D/3D perovskite structure, the optimal PSCs exhibit superior moisture resistance and retain 92% initial PCE after aging at 50 ± 5% relative humidity for 2400 h. This work opens up a new direction for the design of new‐type 2D/3D PSCs with improved performance by employing proper alkylammonium salts with different functional groups.  相似文献   

11.
Although outstanding power conversion efficiency (PCE) has been achieved in flexible perovskite solar cells, unsatisfactory operational stability and toxicity caused by the moisture transmittance of polymer packaging are still the bottleneck challenges that limit their applications. Herein, inspired by the non-selective permeability of inactivated cell membrane, the diphosphatidyl-glycerol (Di-g) is tactfully introduced as a self-shield interface upon the perovskite layer. 96% of lead leakage is suppressed because the amphipathic Di-g can simultaneously bind tightly to the divalent lead ion and afford an interfacial water-resistance. More importantly, the gradient distribution of lattice residual stress perpendicular to the substrate are optimized. The resultant flexible devices achieve a PCE of 20.29% and 15.01% at effective areas of 1.01 and 21.82 cm2 respectively, yielding excellent environmental and mechanical stability. This strategy exhibits the feasibility of developing interfacial encapsulation to stabilize scalable PSCs with negligible lead leakage.  相似文献   

12.
It is highly desirable for all-inorganic perovskite solar cells (PVSCs) to have reduced nonideal interfacial charge recombination in order to improve the performance. Although the construction of a 2D capping layer on 3D perovskite is an effective way to suppress interfacial nonradiative recombination, it is difficult to apply it to all-inorganic perovskites because of the resistance of Cs+ cesium ions in cation exchange reactions. To alleviate this problem, a simple approach using an ultra-thin 2D perovskite to terminate CsPbI3 grain boundaries (GBs) without damaging the original 3D perovskite is developed. The 2D perovskite at the GBs not only enhances the charge-carrier extraction and transport but also effectively suppresses nonradiative recombination. In addition, because the 2D perovskite can prevent the moisture and oxygen from penetrating into the GBs and at the same time suppress the ion migration, the 2D terminated CsPbI3 films exhibit significantly improved stability against humidity. Moreover, the devices without encapsulation can retain ≈81% of its initial power conversion efficiency (PCE) after being stored at 40 ± 5% relative humidity for 84 h. The 2D-based champion device exhibits a high PCE of 18.82% with a high open-circuit voltage of 1.16 V.  相似文献   

13.
The interface energetics-modification plays an important role in improving the power conversion efficiency (PCE) among the perovskite solar cells (PSCs). Considering the low carrier mobility caused by defects in PSCs, a double-layer modification engineering strategy is adopted to introduce the “spiderman” NOBF4 (nitrosonium tetrafluoroborate) between tin dioxide (SnO2 and perovskite layers. NO+, as the interfacial bonding layer, can passivate the oxygen vacancy in SnO2, while BF4 can optimize the defects in the bulk of perovskite. This conclusion is confirmed by theoretical calculation and transmission electron microscopy (TEM). The synergistic effect of NO+ and BF4 distinctly heightens the carrier extraction efficiency, and the PCE of PSCs is 24.04% with a fill factor (FF) of 82.98% and long-term stability. This study underlines the effectiveness of multifunctional additives in improving interface contact and enhancing PCE of PSCs.  相似文献   

14.
Due to the low cost and excellent potential for mass production, printable mesoscopic perovskite solar cells (p-MPSCs) have drawn a lot of attention among other device structures. However, the low open-circuit voltage (VOC) of such devices restricts their power conversion efficiency (PCE). This limitation is brought by the high defect density at perovskite grain boundaries in the mesoporous scaffold, which results in severe nonradiative recombination and is detrimental to the VOC. To improve the perovskite crystallization process, passivate the perovskite defects, and enhance the PCE, additive engineering is an effective way. Herein, a polymeric Lewis base polysuccinimide (PSI) is added to the perovskite precursor solution as an additive. It improves the perovskite crystallinity and its carbonyl groups strongly coordinate with Pb2+, which can effectively passivate defects. Additionally, compared with its monomer, succinimide (SI), PSI serves as a better defect passivator because the long-chained macromolecule can be firmly anchored on those defect sites and form a stronger interaction with perovskite grains. As a result, the champion device has a PCE of 18.84%, and the VOC rises from 973 to 1030 mV. This study offers a new strategy for fabricating efficient p-MPSCs.  相似文献   

15.
Despite the rapid developments are achieved for perovskite solar cells (PSCs), the existence of various defects in the devices still limits the further enhancement of the power conversion efficiency (PCE) and the long-term stability of devices. Herein, the efficient organic potassium salt (OPS) of para-halogenated phenyl trifluoroborates is presented as the precursor additives to improve the performance of PSCs. Studies have shown that the 4-chlorophenyltrifluoroborate potassium salt (4-ClPTFBK) exhibits the most effective interaction with the perovskite lattice. Strong coordination between  BF3/halogen in anion and uncoordinated Pb2+/halide vacancies, along with the hydrogen bond between F in  BF3 and H in FA+ are observed. Thus, due to the synergistic contribution of the potassium and anionic groups, the high-quality perovskite film with large grain size and low defect density is achieved. As a result, the optimal devices show an enhanced efficiency of 24.50%, much higher than that of the control device (22.63%). Furthermore, the unencapsulated devices present remarkable thermal and long-term stability, maintaining 86% of the initial PCE after thermal test at 80 °C for 1000 h and 95% after storage in the air for 2460 h.  相似文献   

16.
Rapid extraction of photogenerated charge carriers is essential to achieve high efficiencies with perovskite solar cells (PSCs). Here, a new mesoscopic architecture as electron‐selective contact for PSCs featuring 40 nm sized TiO2 beads endowed with mesopores of a few nanometer diameters is introduced. The bimodal pore distribution inherent to these films produces a very large contact area of 200 m2 g?1 whose access by the perovskite light absorber is facilitated by the interstitial voids between the particles. Modification of the TiO2 surface by CsBr further strengthens its interaction with the perovskite. As a result, photogenerated electrons are extracted rapidly producing a very high fill factor of close to 80% a VOC of 1.14 V and a PCE up to 21% with negligible hysteresis.  相似文献   

17.
In the past decade, perovskite solar cells (PSCs) have made remarkable progress in improving power conversion efficiency (PCE). In order to further improve the photovoltaic performance and long-term stability of PSCs, the interface layer is essential. A multifunctional cross-linked polyurethane (CLPU) is designed and synthesized via the spontaneous quaternization of polyurethane and 1, 6-diiodohexane on the surface of the perovskite layer. CLPU layer cannot only effectively induce secondary crystallization and passivate the surface defects of perovskite, reduce the non-radiative recombination, but also effectively block the moisture invasion. By this strategy, Cs0.05FA0.95PbI3 PSCs with excellent reproducibility, is realized, achieving a PCE of 23.14% with an open-circuit voltage of 1.11 V, a short-circuit current density of 25.69 mA cm−2, and a fill factor of 0.81. In addition, the unencapsulated devices show enhanced stability in 35 ± 5% relative humidity (RH) near 3000 h and in 65 ± 5% RH over 700 h. This study provides valuable insights into the role of CLPU interface layer in PSCs, which are essential for the design of high-performance devices.  相似文献   

18.
The poor interface quality between nickel oxide (NiOx) and halide perovskites limits the performance and stability of NiOx-based perovskite solar cells (PSCs). Here a reactive surface modification approach based on the in situ decomposition of urea on the NiOx surface is reported. The pyrolysis of urea can reduce the high-valence state of nickel and replace the adsorbed hydroxyl group with isocyanate. Combining theoretical and experimental analyses, the treated NiOx films present suppressed surface states and improved transport energy level alignment with the halide perovskite absorber. With this strategy, NiOx-based PSCs achieve a champion power conversion efficiency (PCE) of 23.61% and a fill factor of over 86%. The device's efficiency remains above 90% after 2000 h of thermal aging at 85 °C. Furthermore, perovskite solar modules achieve PCE values of 18.97% and 17.18% for areas of 16 and 196 cm2, respectively.  相似文献   

19.
The fabrication of high‐quality cesium (Cs)/formamidinium (FA) double‐cation perovskite films through a two‐step interdiffusion method is reported. Csx FA1‐x PbI3‐y(1‐x )Bry(1‐x ) films with different compositions are achieved by controlling the amount of CsI and formamidinium bromide (FABr) in the respective precursor solutions. The effects of incorporating Cs+ and Br? on the properties of the resulting perovskite films and on the performance of the corresponding perovskite solar cells are systematically studied. Small area perovskite solar cells with a power conversion efficiency (PCE) of 19.3% and a perovskite module (4 cm2) with an aperture PCE of 16.4%, using the Cs/FA double cation perovskite made with 10 mol% CsI and 15 mol% FABr (Cs0.1FA0.9PbI2.865Br0.135) are achieved. The Cs/FA double cation perovskites show negligible degradation after annealing at 85 °C for 336 h, outperforming the perovskite materials containing methylammonium (MA).  相似文献   

20.
Tin halide lead-free perovskite solar cells (TPSCs) have received tremendous research interest recently due to their nearly ideal bandgap, broad light absorption, non-toxicity, and environmental friendliness. However, the uncontrollable crystallization process and the facile oxidation of Sn2+ limit the further increase of power conversion efficiency (PCE). To solve these problems, a series of acetates are introduced into the perovskite precursor solution to regulate the crystallization process. It is revealed that formamidine acetate (FAAc) has strong CO Sn coordination with Sn2+ compared with acetic acid (HAc) and methylammonium acetate (MAAc), which can stabilize the lattice structure, minimize defect states and suppress the oxidation of Sn2+. Meanwhile, benefiting from this coordination ability, it not only leads to large-size colloidal clusters in precursor but also slows down the crystallization process and improves the crystallinity of tin halide perovskite films. The device with FAAc achieved an increased PCE from initially 9.84% to 12.43%, and it could maintain 94% of its initial value for 2000 h in N2 atmosphere. This work provides a feasible strategy for depositing high-quality tin perovskite films with low defect density and lattice distortion, which will be crucial for related photovoltaics and other optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号