首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
利用超临界二氧化碳开发油气藏资源极具潜力,但是有许多基础问题仍有待研究,瞬态井底波动压力变化问题是其中之一。基于超临界二氧化碳的物性,文中考虑了超临界二氧化碳与钻柱、井壁的传热,建立了井筒流动控制方程、瞬态控制方程,最终获得井底的热流固耦合瞬态波动压力模型。在停泵条件下,起下钻速度越快,井底波动压力越大。当地面入口温度增大时,最大波动压力降低;当地面出口压力增大时,最大波动压力增大;当起下钻速度为0.1~2.0 m/s时,最大激动压力从0.13 MPa升到3.86 MPa,产生的最大抽汲压力从0.13 MPa升到1.83 MPa。与清水钻井对比发现,超临界二氧化碳钻井产生的波动压力偏低,有利于现场作业,可以适当加快起下钻速度,提高工作效率。  相似文献   

2.
基于牛顿流体、幂律流体以及卡森流体建立的偏心环空稳态波动压力预测模型计算过程对计算机的硬件要求较高,在现场条件下并不适用。为此,基于钻井液赫巴流变模式,利用Fluent软件对起下钻波动压力进行了计算,并将计算结果与现场广泛应用的压力模型及室内试验数据进行了对比验证。建模时采用一阶迎风格式对动量方程的对流项进行离散,壁面设为非滑移壁面。分析结果表明,数值模拟结果与现存的同心环空计算模型及同心、偏心室内试验结果具有很高的一致性,最大误差不超过8%;流动指数、钻柱井筒直径比以及钻柱偏心度对波动压力影响较大,在窄间隙工况或具有高流动指数流体的情况下应严格控制起下钻速度。  相似文献   

3.
现存的波动压力计算模型主要是基于宾汉流体、幂律流体以及赫巴流体所建立的。这几种流变模式在适用范围上都存在一定的局限性,近几年有人提出来一种四参数钻井液流变模式,该模式在不同剪切速率情况下都能精确的描述钻井液的流变特性。 基于四参数流变模式提出了一种直井条件下起下钻稳态波动压力计算模型,通过与现存的模型相对比可以得知,该模型具有很好的适用性。将该模型与Crespo室内实验相对比,结果也吻合较好。此外还分析了起下钻速度、钻井液流动指数、钻柱井筒尺寸比等参数的敏感性。该模型的提出可以对现场精确计算起下钻波动压力、确定安全起下钻速度提供有效的指导。  相似文献   

4.
《石油机械》2016,(12):21-24
合理的钻井液帽高度和密度对于维持起下钻过程中井底压力恒定至关重要。鉴于此,根据控压钻井钻井液帽工艺流程及钻井液帽设计原则,结合起下钻井筒瞬态波动压力计算模型,建立了控压钻井起下钻钻井液帽优化设计模型。以塔中某口水平井为例进行数值模拟计算,计算结果表明:随钻井液帽高度的增加,井底波动压力最大值呈线性增加;结合约束条件给出钻井液帽高度和密度的优化区间分别为1 265~1 930 m、1.34~1.48 g/cm~3,推荐采用钻井液帽优化区间的中间值(高度1 598 m,密度1.39 g/cm~3,波动压力极大值为0.84 MPa)作为现场作业参数。研究结果可为控压钻井钻井液帽作业参数的选取提供理论指导。  相似文献   

5.
宾汉液体直井稳态波动压力计算模式研究   总被引:1,自引:0,他引:1  
为避免井下复杂情况的发生,严格控制起下钻或下套管等钻井作业过程中井内产生的波动压力,是钻井设计和施工必须考虑的重要问题之一。这就要求对实际波动压力的预测要有较高的精度,即需要精度较高的预测模式。多年来常用的波动压力计算模式为近似模式,存在一定的误差。为此,本文以宾汉流变模式为基础,从理论上推导并建立了直井起下钻或下套管过程中稳定层流条件下钻井液粘性所产生的波动压力计算模式——稳态波压模式。给出了便于现场使用的计算公式和图表。对钻井现场更好地控制起下钻或下套管速度和钻井液性能有一定的参考作用。  相似文献   

6.
喻先进 《江汉石油科技》2002,12(4):39-40,43
在常规井眼中,钻柱在充有钻井液的井筒内运动时会引起波动压力,破坏井眼系统压力平衡,导致井喷、井漏和井塌或卡钻等井下复杂情况和事故。在小井眼中,由于水力学系统各流道组合发生了改变,预测和控制小井眼波动压力就显得尤为重要。结合小井眼钻井实例,定量分析了有关因素对小井眼波动压力的影响,提出了在小井眼起下钻中,严格控制起下钻速度的重要性。  相似文献   

7.
在窄安全密度窗口地层下套管过程中,套管柱在井眼中运动产生的波动压力极易诱发井下复杂情况。为保障窄安全密度窗口条件下下套管作业的安全,文章建立了偏心环空下套管瞬态波动压力计算模型,并基于井筒压力平衡关系建立了尾管下入与钻杆送入过程中井筒压力预测与控制模型,分析了作业中井底压力瞬态波动的主要影响因素,开展了现场控压下套管案例研究。研究结果表明,套管下入速度、套管偏心度、钻井液流变参数是影响井底压力波动的主要因素。环空瞬态波动压力随着环空流体流变参数(屈服值、稠度系数、流性指数)、套管下入速度的增大而增大,随着偏心度的增加而减小。并在DB-X井开展了现场试验,建立了控压下套管井筒压力控制图版,计算结果显示当尾管送入速度控制在0.16~0.20 m/s时能有效保障井底安全,该数据指导了本井的现场施工,有效防止了下套管过程中井下复杂的发生。文章的研究结果为下套管速度优化、井底压力控制提供了新思路,对降低窄安全密度窗口地层中下套管施工风险和提高固井质量具有重要意义。  相似文献   

8.
准确预测钻井过程中的井筒温度是科学评价井筒中流体流动安全与压力控制的关键。为此,基于井筒–地层各区域能量守恒原理,建立了井筒–地层传热数值模型和井筒–地层传热解析模型,分别用全隐式有限差分法和解析法对数学模型进行了求解;并结合顺北油田某超深井井身结构与钻井参数,从传热机理上分析了2种模型的井筒温度计算精度及其影响因素。分析认为:钻进时,下部井段环空流体温度低于原始地温,而上部井段流体高于原始地温;解析模型应用简化的无因次时间函数表示从远处地层传至近井壁的拟稳态热交换方式,并用综合传热系数表征地层–环空、环空–钻柱内总的热交换量,减少了井筒与地层间的热交换量,导致其计算出的环空和钻柱内流体温度低于数值模型。研究结果表明,数值模型计算结果与实测值吻合程度高,数值模型和解析模型的计算误差分别为1.46%和6.94%,两者计算结果差值为13.15 ℃。研究结果为深入认识钻进中井筒-地层传热机理和准确评价温度场提供了理论依据。   相似文献   

9.
窄安全密度窗口地层压力敏感,钻井起下钻作业引起井底压力波动,易诱发溢流、井漏等井下复杂。
文章以一维瞬态流动模型,考虑井筒液-固两相介质,建立了起下钻井底压力瞬态波动理论模型,并通过数值模拟
研究了影响钻井起下钻井底压力瞬态波动的主要因素。研究表明,起下钻速度、井深、钻井液密度、起下钻深度是
影响井底压力波动的主要因素。起下钻速度、钻井液密度越大,井深越深,起下钻深度越深,起下钻作业引起的井
底压力波动越剧烈,压力波峰值滞后越严重。起下钻作业时,尤其在起钻的早期和下钻后期,应尽量降低起下钻速
度,以降低井底压力波动,保障井底压力处在安全密度窗口之内。  相似文献   

10.
现有摩阻扭矩分析模型,常采用单一的刚杆或软杆模型,且鲜有考虑钻具屈曲的影响,预测结果与实测值存在较大误差。文章针对钻具的不同受力特点,分别采用软杆模型、刚杆模型和连续梁模型,在综合考虑钻具屈曲影响下,建立了考虑钻具屈曲的摩阻扭矩分段计算模型,通过模型计算值与现场钻井过程中实测值对比,模型扭矩和轴向载荷预测值与实测吻合好,平均相对误差分别为6%和7%。模型分析发现钻柱正弦屈曲与螺旋屈曲随轴向压力的增大交替出现;管柱的屈曲会随井斜的变化出现跳跃性变化;在滑动钻进过程中,如果忽略钻柱屈曲的影响,井口轴向载荷明显增大,实际传递到钻头的钻压将比预计的要小。在现场试验中,通过该模型计算的摩阻扭矩值及时调整了井口钻压及措施,有效降低了钻柱发生屈曲的程度,提高了钻井机械速度,对于指导现场钻井参数实时调整,提高钻井效率具有重要意义。  相似文献   

11.
为解决窄安全密度窗口的复杂压力剖面问题,基于质量守恒方程及动量守恒方程,建立了节流阀动作引发的环空波动压力模型,并应用中心差分法对模型进行了求解。研究表明,随钻井液排量增大、节流阀动作时间减小,环空所受波动压力呈增大趋势;阀芯所受波动压力大于环空段;钻井液排量从36 L/s增至56 L/s时,阀芯所受波动压力峰值从1.26 MPa增至1.56 MPa,钻铤段波动压力峰值为0.22 MPa;节流阀动作时,套管鞋处引发故障的概率比井底高至35%。研究结果表明,两步、多步线性关阀较一步关阀,不但关阀手段灵活,更可有效减小环空波动压力峰值。   相似文献   

12.
蛇曲井稳态产能计算模型   总被引:4,自引:2,他引:2  
蛇曲井是一种新的复杂结构井,其生产井段起伏较大,不能直接用常规水平井产能公式计算其产能。以1口蛇曲井在无界地层中生产时引起的势分布为基础,根据镜像反映和势叠加原理,建立了底水油藏、气顶底水油藏及边水油藏中1口蛇曲井生产时的势分布和压力分布方程。考虑井筒流动和地层渗流的耦合作用,建立了蛇曲井的稳态产能计算模型,给出了模型的求解方法。实例计算表明:当井的水平段起伏较大时,不能将其处理为水平井,而应根据蛇曲井产能计算模型计算其产能,否则将导致产能预测出现较大偏差。  相似文献   

13.
国内外围绕井筒温度方面的研究主要集中在稳态流条件下,建立了较成熟的气井稳态流井筒温度、压力计算模型。但气井在生产过程中,由于生产组织和试井测试的需要,对其产量将进行调整,此时井筒管流属于非稳态流,已有的基于稳态流的井筒温度模型不适用于非稳态流的井筒温度计算。为此,通过分析井筒非稳态传热温度变化特征,根据井筒瞬态温度与稳态温度的关系,将任意时间点的井筒温度变化划分为递减、稳定和递增3种类型。采用微元时间段计算井筒温度和压力的思路,对定产量开井井筒温度模型进行改进,提出温度叠加递增井筒温度压力计算方法,并根据杜哈梅的等效叠加原理,提出温度叠加递减井筒温度压力计算方法,建立了气井非稳态流井筒温度压力模型,解决了变流量条件下气井井筒温度、压力的计算问题。通过实例分析对比表明,在气井开井和产量调整初期,气井非稳态流井筒温度压力模型比稳态流井筒温度压力模型计算更加准确,该模型适用于气井生产全过程,应用范围更广,符合生产实际。  相似文献   

14.
四川盆地地质构造复杂,以川西地区为例,井深7000 m以上,安全密度窗口仅0.05~0.08 g/cm3,固井漏失风险高,通常被迫反挤水泥浆补救,固井质量段长合格率仅39.6%。基于此,开展控压固井工艺研究,以川西地区为例,分析了井筒工作液密度、钻井液流变性、顶替排量、环空控压值对固井防漏和顶替效率的影响。研究表明,控压固井前钻井液等井筒工作液密度下调范围宜在0.05~0.08 g/cm3;钻井液动切力宜低于6 Pa;固井顶替排量应不低于22 L/s,即环空返速为0.9m/s,同时顶替后期应根据薄弱层位压力当量密度,采取变排量顶替技术;采用控压下套管工艺和分段憋压候凝技术解决常规下套管工艺和候凝工艺的不足。控压固井技术在四川盆地窄密度窗口超深井应用26井次,创造了多项应用指标记录,最大井深7793 m,最小密度窗口0.05 g/cm3,一次上返率为100%,固井合格率为100%,复杂易漏失井固井质量段长优质率由21.45%提高到44.58%,较好地解决了固井漏失低返问题。   相似文献   

15.
四川盆地地质构造复杂,以川西地区为例,井深7000 m以上,安全密度窗口仅0.05~0.08 g/cm3,固井漏失风险高,通常被迫反挤水泥浆补救,固井质量段长合格率仅39.6%。基于此,开展控压固井工艺研究,以川西地区为例,分析了井筒工作液密度、钻井液流变性、顶替排量、环空控压值对固井防漏和顶替效率的影响。研究表明,控压固井前钻井液等井筒工作液密度下调范围宜在0.05~0.08 g/cm3;钻井液动切力宜低于6 Pa;固井顶替排量应不低于22 L/s,即环空返速为0.9m/s,同时顶替后期应根据薄弱层位压力当量密度,采取变排量顶替技术;采用控压下套管工艺和分段憋压候凝技术解决常规下套管工艺和候凝工艺的不足。控压固井技术在四川盆地窄密度窗口超深井应用26井次,创造了多项应用指标记录,最大井深7793 m,最小密度窗口0.05 g/cm3,一次上返率为100%,固井合格率为100%,复杂易漏失井固井质量段长优质率由21.45%提高到44.58%,较好地解决了固井漏失低返问题。  相似文献   

16.
在欠平衡钻井过程中,为避免井底压力波动过大,引起过平衡状态,对产层造成伤害,保持全过程欠平衡钻井十分必要。分析了影响井底压力波动的因素,介绍了国内外在井底压力控制技术方面的最新研究成果,总结了欠平衡钻井井底压力预测技术研究现状。通过分析该研究领域内存在的不足及应用上的局限性,提出了解决井底压力波动的最新压力预测及控制技术的研究方向,即建立井筒和地层耦合的动态欠平衡钻井模型,实时监测和控制井底压力,在起下钻及接单根过程中,用地层流体的适当流入来代替中断的地面注入过程,避免井底压力波动过大而引起过平衡的钻井状态,保持全过程欠平衡钻井,最大限度地保护产层。另外,为了保证欠平衡钻井井底压力预测的有效性,提出了井底压力预测应采用稳态模型和动态模型结合的新方法。  相似文献   

17.
准确了解钻井过程中井筒温度及其变化规律对于安全、高效钻井具有重要的意义。根据热力学第一定律及传热理论,建立了完整的钻井循环过程中温度场数学模型,分析了井筒中非牛顿流体螺旋流动的传热机理以及水力学能量和机械能量对井筒温度场的影响规律,对高温高压循环当量密度计算和井筒温度控制方法进行了初步探讨。模型计算结果与现场试验数据吻合较好。由数值模拟结果得出:在井深2 000.00 m处,钻柱转速从0 r/min升至200 r/min时该处温度升高4.5 ℃;在井深5 000.00 m处,钻柱转速从0 r/min升至200 r/min时该处温度升高7.8 ℃。研究结果表明,井底温度随钻柱转速的增加呈指数增长,随着井深的增加,钻柱旋转对井底温度的影响更加明显。建立的温度场模型可为高温高压地层钻井水力学设计和现场作业过程中的温度控制提供理论参考。   相似文献   

18.
气液两相流循环温度和压力预测耦合模型   总被引:1,自引:0,他引:1  
为保证欠平衡钻井安全钻进,需要给欠平衡钻井设计提供井筒温度和压力分布等基础数据。基于气液两相流钻井液循环时的流动特征和井筒与地层的传热机理,建立了适用于欠平衡钻井预测气液两相流钻井液循环温度和压力的耦合模型,给出了模型的离散方法和求解方法。在模型的求解过程中,考虑了温度和压力对气相(空气、氮气)的密度、比热、比焓、动力黏度、热导率等热物性参数的影响及热源对气液两相流钻井液温度场的影响,保证了气液两相流循环温度和压力的计算精度。基于大庆油田升深2-17井充氮气欠平衡钻井试验数据,利用气液两相流钻井液循环温度和压力预测耦合模型对欠平衡钻井时的井底温度和压力进行了计算,计算结果与实测结果吻合程度高,验证了模型的有效性。对比分析了以地温、地面温度作为气液两相钻井液温度和考虑井筒换热3种情况下的环空压力剖面特征,为欠平衡钻井设计及控压钻井设计和施工提供了理论基础和技术支持。  相似文献   

19.
欠平衡钻井正气举过程井筒瞬态流动数值模拟   总被引:1,自引:0,他引:1  
正举法气举作业的实施效果直接决定着欠平衡钻完井施工的成败,特别是气举过程中的井下压力动态演变,关系到整个作业过程中的井控安全。正举法气举作业的实质是在井下停止循环的初始条件下氮气连续气举作业,井下流体由静止状态到气体穿越液体滑脱至井口的不同于常规稳态流动的瞬态气液两相流动。针对这一特殊流动研究,完成了停止循环开井条件下气举时井下瞬态气液两相流动特征参数变化数值模拟计算方法和数学求解模型的建立,通过实际井数值计算连续气举时井下瞬态气液两相流特征参数变化得出规律性认识,如氮气沿井眼滑脱上升运动速度逐步加大、顶出钻井液随时间的增多、井底流压瞬时波动在初始阶段最大等。研究成果丰富了欠平衡氮气钻完井施工正举法气举作业的井筒流动模型体系和压力控制方案,增强了该特殊流动规律的认识,为井控安全提供了理论保障。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号