首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
通过增材制造成型复杂晶格结构,实现航空航天结构件的轻量化设计得到越来越多的应用,然而点阵结构设计及其性能评价仍欠缺。本研究采用金刚石结构为基体,以点阵密度、结构形式为目标,设计不同几何参数试样,并以TC4钛合金为对象进行成型。对成型试样进行压缩试验,研究这种结构不同尺寸试样压缩性能的差异,结果表明:金刚石点阵结构试样受到载荷后应力在连接节点位置集中,产生断裂。提高晶胞密度可以缓解应力集中现象,提高比强度,减少晶胞尺寸和添加外壳都可以使应力均匀化,提高性能稳定性。小晶胞尺寸试样对球化现象、孔隙等冶金缺陷较为敏感,造成强度的下降。  相似文献   

2.
采用选区激光熔化(SLM)技术成形TC4钛合金均匀与梯度点阵结构,研究了不同杆径(0.8~1.2mm)、单胞类型(bcc、fcc、fbcc)、添加竖向支杆(bccz、fccz、fbccz)对均匀与梯度形式点阵结构压缩性能及能量吸收的影响规律。结果表明:1.2mm杆径点阵结构性能最优;fccz与fbccz点阵结构分别在同质量与同体积下具有最佳的性能;竖向支杆的存在能够大幅的增强点阵结构在特定加载条件下的性能;均匀点阵结构在失效前的压缩性能与能量吸收优于相同相对密度及应变的梯度点阵结构,由于梯度点阵结构逐层断裂的特性,在50%及更大应变的状态下具有更优的性能,更适于应用在吸能装置。  相似文献   

3.
梯度点阵结构由于压缩时具有优秀的吸能能力,目前常作为吸能组件被应用于航天、国防和医疗等领域。但随着现代工业的发展,工程领域对其压缩性能提出了更高的要求,为使其进一步优化,有必要探讨单胞构型、结构参数和压缩性能之间的关系。因此本研究通过选区激光熔化(Selective laser melting, SLM)成形了两种梯度差的AlSi10Mg变杆径梯度体心立方(Body-centered cubic, BCC)和金刚石(Diamond, Diam)结构,以研究梯度差对压缩性能的影响,并对两种单胞构型进行对比。准静态单轴压缩实验和有限元分析(Finite element analysis, FEA)的结果表明,在同相对密度下,当单胞构型相同时,随着梯度差的增加单位体积吸能量明显增加。而梯度差相同时,Diam梯度点阵结构的压缩模量、屈服强度、抗压强度和最大峰值应力均高于BCC,同时其单位体积吸能量和吸能效率也高于BCC。  相似文献   

4.
采用选区激光熔化(Selective Laser Melting,SLM)技术成形了2024铝合金,研究了扫描间隔对显微组织及室温力学性能的影响。结果表明:扫描间隔0.12 mm时,2024铝合金显微组织细小,硬度达124 HB,抗拉强度为372 MPa,具有较高的室温力学性能。  相似文献   

5.
采用激光选区熔化技术成形Cu-Al-Mn-La合金,成形过程中合金粉末逐层叠加并经历快速熔化凝固的过程,使得合金的组织与铸造中不同,性能得到了改善。通过对微观组织分析,试样在熔敷道中心至边界依次分布着细晶区、过渡区和等轴晶区,同时存在马氏体结构;物相分析可知试样中含有β1母相和马氏体相,纳米压痕分析显示试样的纳米硬度为(4.33±0.17)GPa,杨氏模量为(122±8)GPa。  相似文献   

6.
《铸造技术》2017,(12):3013-3015
为有效推进选区激光熔化成形技术的推广与应用,在功能需求分析基础上,结合.NET C#和FreeCAD平台,提出一种选区激光熔化成形控制系统软件设计。该系统以开源几何模型软件Free CAD+Visual Studio.NET(C#)2010为平台,设计了标准的CAD几何对象管理数据结构,具有CAD/CAM三维零件实体模型数据处理模块和良好的人机交互功能模块。股骨假体零件的加工试验结果表明,所提出的选区激光熔化成形控制系统运行良好,具有较好的成形工艺精度。  相似文献   

7.
采用选区激光熔化成形技术制备了两种钛合金体心立方多孔结构(BCC和BCC-Z)制件,验证了其成形复杂孔制件的可行性;进行了静态压缩试验,结果表明制件沿近45°方向断裂;压缩试验应力应变曲线表明多孔件使材料抗拉强度大大减小,且随着边径比和孔隙率的增大,峰值应力减小。同时,在边径比和孔隙率相差不大的情况下,BCC-Z结构承受载荷的能力明显高于BCC结构;通过有限元模拟分析了BCC制件在压缩过程中的应力分布情况,针对单元体节点处的应力集中现象,提出了节点加固方法。同时预测了多孔制件的弹性模量和屈服强度,模拟与试验结果基本吻合。  相似文献   

8.
主要研究了激光选区熔化(selective laser melting,SLM)成形Inconel 718合金经固溶时效(SA)、均匀化+固溶时效(H+SA)、热等静压+固溶时效(HIP+SA)3种热处理后显微组织结构的转变与力学性能之间的关系.结果表明,沉积态试样的晶粒内部存在大量树枝晶结构,枝晶间析出了大量硬脆La...  相似文献   

9.
基于选区激光熔化技术(SLM),制备了BCC、FCC、FCCZ 3种不同拓扑单元的316L不锈钢多孔结构,验证了该技术成形复杂多孔结构件的可行性。对试样进行了准静态压缩试验,得到了多孔结构在压缩过程中的变形模式和力学响应曲线,对比分析了3种结构试样的力学性能。结果表明,FCCZ型多孔结构的抗压性能和能量吸收特性均优于BCC型和FCC型结构;利用ABAQUS/Explicit软件进行准静态压缩仿真,仿真结果和试验结果基本符合。  相似文献   

10.
基于Al-4.8Mn-1.7Mg-0.75Sc-0.75Zr铝合金,研究了各向异性对合金显微组织及力学性能的影响。结果表明,选区激光熔化制备出无裂纹致密合金样品,纵截面显微组织有典型熔池结构,由细等轴晶粒和长柱状晶组成,横截面显微组织有条带状结构,由细等轴晶组成。经时效处理后,横向试样屈服强度、抗拉强度和伸长率分别是512 MPa、540 MPa和15%,而纵向试样的屈服强度、抗拉强度和伸长率分别是502 MPa、536 MPa和12%,力学性能各向异性不显著。  相似文献   

11.
研究了单、双层扫描策略和能量密度(246~640 J/mm3)对选区激光熔化钽显微组织及力学性能的影响。采用扫描电子显微镜和电子背散射衍射对选区激光熔化钽的显微组织进行表征,并对其显微硬度和拉伸性能进行检测。结果表明,选区激光熔化钽显微组织由明显向上生长的柱状晶构成,双层扫描后的钽具有更细的晶粒尺寸。随着输入能量密度的提高,选区激光熔化钽的强度、显微硬度和塑性均具有明显的上升趋势。此外,双层扫描工艺可进一步提高材料密度,且在保留强度的基础上,增强材料塑性。在能量密度为640 J/mm3(双层扫描)时,金属钽性能最优,显微硬度、极限抗拉伸强度及延伸率分别为2307 MPa,527 MPa和11.4%。  相似文献   

12.
为了研究QSn6.5-0.1锡青铜激光选区熔化(SLM)技术直接成型工艺及其成型性能,设计三因素四水平正交工艺实验,研究激光功率、扫描速度和扫描间距对致密度的影响,采用SEM、OM、Micro-CT以及显微硬度仪研究微观组织与硬度。结果表明:选择合理的优化工艺参数,锡青铜(SLM)成型致密度最高达到98.71%;微观组织为网络状枝晶结构且分布均匀的(α+δ)相和α相;成型试样显微维氏硬度比传统铸造的软态(700~900 MPa)高45%左右;直接成型的风轮模型致密性高。表明采用激光选区熔化技术可以成型性能较好的QSn6.5-0.1锡青铜合金零件。  相似文献   

13.
采用选区激光熔融法在不同扫描速度下制备了316L不锈钢成型件,通过物相分析、金相观察、拉伸试验、维氏硬度试验和表面粗糙度试验,研究了扫描速度对成型件相组成、熔池形态、表面粗糙度、密度和力学性能的影响。结果表明,在不同的扫描速度下(800~1200 mm/s)样品均能成功打印。此外,随着扫描速度的增加,未重熔的熔池深宽比降低,表面粗糙度从5.78μm增加到22.79μm。当扫描速度为800 mm/s时,裂痕出现;当扫描速度超过1100 mm/s时,出现收缩纹路。当扫描速度为800 mm/s时,由于激光输入能量过高,样品具有较高的孔隙率。当扫描速度为900 mm/s时,样品具有最佳的维氏硬度(2401 MPa)和最高的相对密度(99.2%)。  相似文献   

14.
目的 探究多孔Ti6Al4V经过微弧氧化(MAO)表面改性后力学性能的变化规律。方法 采用选区激光熔化(Selective Laser Melting,SLM)制备了相对密度分别为0.30、0.38、0.47的多孔Ti6Al4V点阵材料,利用表面化学抛光预处理和MAO工艺在其表面制备MAO膜层,再通过显微观察和单轴压缩试验分析其微观形貌和力学性能。结果 经过表面化学抛光预处理和MAO之后的多级多孔Ti6Al4V表面MAO膜层的孔径大小与脉冲电压及氧化时间呈正相关,膜层厚度和膜层中的钙磷原子比与氧化时间均呈现正相关关系,且在350 V脉冲电压和10 min氧化时间条件下制备的膜层最为均匀。MAO前后多孔Ti6Al4V的压缩应力-应变曲线基本一致,两者的弹性模量和屈服强度均随相对密度的增加而提高。与G-A方程计算的理论值相比,实测的弹性模量略有下降,但不显著,这可能是因为多孔Ti6Al4V在SLM成形过程中由于快速加热和冷却导致残余应力的产生,从而导致其弹性模量减小。同时由于SLM成形的多孔Ti6Al4V点阵材料中的孔隙壁可能低于理论预测中所假设的值,这会使得孔隙壁在加载过程中发生变形或破坏,这也会导致材料整体弹性模量的降低。而实测的屈服强度高于G-A方程计算的理论值,这可能是由于SLM成形多孔Ti6Al4V点阵材料的孔隙结构相较于G-A方程的理论模型更加规则。此外,在对数坐标中,MAO前后的屈服强度与弹性模量呈强正比关系,斜率分别为1.10和1.18,十分趋近于G-A方程的理论值。这亦表明MAO对多孔Ti6Al4V的整体力学性能影响有限。结论 脉冲电压为350 V、氧化时间为10 min条件下MAO工艺所制备的膜层最为均匀,同时MAO对SLM成形多孔Ti6Al4V点阵材料的总体力学性能影响有限。  相似文献   

15.
In this study, the infl uence of laser remelting on the relative density, martensitic transformation temperatures(MTTs), and mechanical properties of a NiTi alloy fabricated by selective laser melting(SLM) at a laser power between 15 and 75 W were investigated. A relative alloy density of approximately 99% was achieved in the power range of 45–60 W corresponding to the forming energy density range of 65.45–87.27 J/mm~3. The MTTs increased with the increase in the energy density; thus, the initial contents of the B2 and B19′ phases of the SLM-produced NiTi alloy can be tailored by the utilized technique. However, the number of defects such as metallurgical pores and microcracks considerably increased at higher energy densities( 87.27 J/mm~3). Interestingly, the concentration of these defects was reduced by remelting in the energy density range of 21.82–65.45 J/mm~3, while the alloy relative density increased to 99.7% ± 0.1% at a remelting energy density of 65.45 J/mm~3. The results of tensile testing revealed that when the remelting energy was 75% or 100% of the forming energy input, the ultimate tensile strength and elongation of the alloy significantly increased. Therefore, the remelting strategy represents a promising route for manufacturing NiTi alloys with desired MTT ranges and mechanical properties.  相似文献   

16.
采用选区激光熔化(selective laser melting,SLM)工艺制备了TiN/Inconel 718(IN718)复合材料,利用OM、SEM、EDS、EBSD以及XRD等手段研究了SLM成形态和不同热处理条件下TiN/IN718复合材料的微观组织和力学性能.结果表明:SLM成形态TiN/IN718复合材料中TiN颗粒与基体之间紧密结合,并形成了约为0.3μm厚的过渡层,与IN718合金相比,TiN/IN718复合材料的显微硬度和拉伸强度均有明显改善(分别提高39 HV0.2和74 MPa).双时效(DA)和固溶时效(SA)热处理的TiN/IN718复合材料中,强化相的析出和TiN颗粒的存在导致裂纹萌生源增多,从而造成强度没有得到明显提升.均匀化+固溶时效(HSA)热处理后材料发生了完全再结晶,晶粒内部析出了超细球状的γ'/γ'强化相,晶界处和晶粒内部TiN颗粒周围的针状δ相含量增加.因此,经过HSA处理后材料的抗拉强度有显著提升,达到1430 MPa(提高了410 MPa).  相似文献   

17.
采用SEM、EBSD、DSC、XRD和万能拉伸试验机等手段,研究了SLM成形过程中Inconel 738合金裂纹形成机理、组织各向异性以及对力学性能的影响。研究表明,Inconel 738合金在SLM成形过程中奥氏体 相中主要析出 相和MC型碳化物,其凝固过程为L→ → +MC→ + +MC;低熔点 + 共晶组织经再次受热液化形成裂纹源,在残余拉应力的作用下扩展形成微裂纹;同时,微裂纹周围的残余应力均匀分布,微裂纹起始附近的晶粒取向差高于未产生微裂纹的位置;此外,XY面上的微裂纹方向垂直于激光扫描方向,XZ面上的微裂纹方向平行于Z轴;SLM成形Inconel 738合金的择优取向与最大温度梯度有关,在XY和XZ面上晶体均表现出强<100>取向;沿XY和XZ方向的SLM成形试样力学性能均高于精铸试样,且XZ方向的强度高于XY方向,而延伸率小于XY方向。  相似文献   

18.
目的综合提升选区激光熔化(Selective Laser Melting,SLM)成形M2052锰铜合金的力学性能。方法利用SLM技术成形M2052锰铜合金,并通过固溶、时效及固溶+时效等热处理方法对其成形态组织进行调控。通过扫描电子显微镜和X射线衍射仪,对合金的显微组织、晶粒形貌、拉伸断口形貌及物相组成进行分析,并通过拉伸性能、冲击性能测试,分别评价SLM成形及热处理后的屈服强度、抗拉强度、延伸率和冲击韧性。结果 SLM成形的M2052合金经过固溶处理后,形成了典型的类孪晶结构;时效处理后的组织和SLM成形态类似,形成了细微的亚孪晶组织;固溶+时效处理后,类孪晶组织粗大。四种状态的显微组织均由单相γ固溶体组成,时效态和固溶+时效态析出了α-Mn相,但时效态析出含量较多。SLM成形态具有较高的抗拉强度σb和屈服强度σp0.2(636 MPa和548 MPa),时效处理能提高合金的σb和σp0.2(707MPa和570MPa),但是冲击韧性和延伸率(5.5J和8.5%)较差;而固溶处理能显著提高合金的冲击韧性和延伸率(23.5 J和22.25%)。综合比较,固溶+时效态试样具有最好的力学性能(冲击韧性为17 J,延伸率为10.8%,σb为503 MPa和σp0.2为322.5 MPa)。断口分析表明,四种状态下均为韧性断裂。结论固溶+时效热处理可以在存在单相γ固溶体条件下析出少量的α-Mn相,综合提升锰铜合金的力学性能。  相似文献   

19.
以粒度集中的纯钨粉末为原料,通过选择性激光熔化技术(selective laser melting, SLM)制备样品,分别经过1000, 1400及1960℃的热处理2 h。研究不同相对密度和不同热处理后样品的力学性能和显微组织,并采用X射线衍射(XRD)表征其微观结构。结果表明:纯钨样品的相对密度处于75%~95%之间,其抗弯强度和显微硬度随相对密度的增加而增大,显微组织大体相似。经不同高温处理后,在1400℃处理后样品达到了最佳的力学性能,1960℃处理后样品的晶粒发生了明显的长大现象,材料力学性能降低。XRD图谱结果表明,SLM制得样品及经过1960℃烧结后,其晶体结构并未发生改变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号