首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultra-fine TiC0.7N0.3-based cermet is prepared and the phase evolution and microstructure are studied by XRD and SEM. The results show that in ultra-fine cermet, solid state reactions take place more readily than in common cermets at 900 °C; liquid phase forms at about 1230 °C in ultra-fine cermets, which is at a lower temperature than what has been reported; denitridation occurs during sintering of both cermets in vacuum, and they had better be sintered in N2 to preserve the C/N atomic ratio of TiC0.7N0.3.  相似文献   

2.
HfC, TaC, or WC were individually added to a Ti(C0.7N0.3)–30 wt% Ni system, in order to investigate microstructural changes and the dissolution behaviors of Ti(C0.7N0.3) and the carbides. Of these systems, the Ti(C0.7N0.3)–WC–Ni system proved to be the most favorable for the refinement of microstructure. The fraction for the cross-sectional area of the Ti(C0.7N0.3) cores, which is related to the amount of Ti(C0.7N0.3) dissolved, increases and the thickness of solid solution rims decreases in the order of HfC, TaC, and WC added. This finding indicates that the dissolution rate of Ti(C0.7N0.3) in a Ni melt is the lowest when WC is added. In addition, it was found that the average dissolution rate of Ti(C0.7N0.3) in the HfC-containing system is 1.6 and 1.9 times higher than those for Ti(C0.7N0.3) in the TaC- and WC-containing systems at the same sintering conditions. Further, the dissolution rates of TaC and WC were 80% of the rate found for HfC during the formation of the outer rim.  相似文献   

3.
詹斌  刘宁  蔡威  杨海东 《热处理》2013,(5):12-18
采用粉末冶金法制备了超细晶Ti( C, N)基金属陶瓷和纳米改性Ti( C, N)基金属陶瓷试样和刀具。研究了陶瓷相粉末粒度对Ti( C, N)基金属陶瓷显微组织、力学性能及其刀具耐磨损性能的影响。结果表明,超细晶Ti( C, N)基金属陶瓷和纳米改性Ti( C, N)基金属陶瓷的硬质相均具有黑芯/灰壳和白芯/灰壳两种显微结构。超细晶Ti( C, N)基金属陶瓷中白芯/灰壳结构硬质相晶粒较多,而纳米改性Ti( C, N)基金属陶瓷中硬质相晶粒主要为黑芯/灰壳结构。与超细晶Ti( C, N)基金属陶瓷相比,纳米改性Ti( C, N)基金属陶瓷具有较高的抗弯强度和断裂韧度以及较低的硬度和孔隙度。纳米改性Ti( C, N)基金属陶瓷刀具具有较长的使用寿命,约为超细晶Ti( C, N)基金属陶瓷刀具使用寿命的2.3倍。  相似文献   

4.
(Ti0.7W0.3)C solid solution powder was synthesized by high-energy ball milling. We investigated the effect of excess carbon in this system on the microstructure, pore level, and mechanical properties of (Ti0.7W0.3)C?-20 wt.% Ni cermet. We also report the variations in the carbon stoichiometry of the (Ti0.7W0.3)Cx phase in the powder and in the (Ti0.7W0.3)Cx?-20 wt.% Ni cermet after carbothermal reduction and liquid phase sintering, respectively. The particle size of the solid-solution carbide decreased with increasing carbon content in the (Ti0.7W0.3)C-?20 wt.% Ni cermets. This occurred because the dissolution of the solid solution (Ti,W)C is hindered by the high activity of carbon. However, an increase in the carbon content generated pores and carbon segregation, resulting in poor mechanical properties, as also observed in other carbide cermets.  相似文献   

5.
The catalytic effect of the addition of lanthanum oxide (La2O3), in the range 0.5–2.0 mol%, on the hydrogen storage properties of MgH2 prepared by ball milling has been studied. The addition of La2O3 reduces the formation during milling of the metastable orthorhombic γ-MgH2 phase. The desorption rate of samples with 1 and 2 mol% La2O3 comes out to be about 0.010 wt% per second at 573 K under an hydrogen pressure of 0.3 bar, better than for sample with 0.5 mol% La2O3. The presence of LaH3 after hydrogenation/dehydrogenation cycles has been observed in all samples. The sample with 1 mol% of La2O3 gives a lower hysteresis factor compared with sample with 2 mol%.  相似文献   

6.
The formation and chemical leaching effects of a nonequilibrium Al0.6(Fe25Cu75)0.4 powder produced by rod milling is described. X-ray diffraction, transmission electron microscopy, differential scanning calorimetry and vibrating sample magnetometry were used to characterize both the as-milled and leached specimens. After 400 h of milling, only the bcc AlFe phase with an amorphous phase was detected in the XRD patterns. The crystallite size for the bcc AlFe phase (110) after 400 h of milling was about 5.3 nm. The peak temperature and the crystallization temperature of the as-milled powders were 448.7 and 428.0 °C, respectively. Al atoms leaching from the as-milled bcc AlFe powders in the L1 condition did not alter the diffraction pattern significantly, even though Al atoms had been removed. After the L1 specimen was annealed at 500 °C for 1 h, the bcc AlFe phase transformed to the fcc Cu, Fe, and CuFe2O4 phases. The peak widths of L1 and L2 specimens were similar, but became broader than that of the as-milled powder. The saturation magnetization decreased with increasing milling time, and a value of 10.4 emu/g was reached after 400 h of milling. After cooling the specimen from 750 °C, the magnetization slowly increased at approximately 491.4 °C, indicating that the bcc AlFe phase had transformed to the fcc Cu and Fe phases.  相似文献   

7.
Copper matrix was reinforced with Al2O3 particles of different size and amount by internal oxidation and mechanical alloying accomplished using high-energy ball milling in air. The inert gas-atomised prealloyed copper powder containing 1 wt.% Al as well as a mixture of electrolytic copper powder and 3 wt.% commercial Al2O3 powder served as starting materials. Milling of Cu-1 wt.% Al prealloyed powder promoted formation of fine dispersed particles (1.9 wt.% Al2O3, approximately 100 nm in size) by internal oxidation. During milling of Cu-3 wt.% Al2O3 powder mixture the uniform distribution of commercial Al2O3 particles has been obtained. Following milling, powders were treated in hydrogen at 400 °C for 1 h in order to eliminate copper oxides formed at the surface during milling. Compaction was executed by hot-pressing. Compacts processed from 5 to 20 h-milled powders were additionally subjected to high-temperature exposure at 800 °C in order to examine their thermal stability and electrical conductivity. Compacts of Cu-1 wt.% Al prealloyed powders with finer Al2O3 particles and smaller grain size exhibited higher microhardness than compacts of Cu-3 wt.% Al2O3 powder mixture. This indicates that nano-sized Al2O3 particles act as a stronger reinforcing parameter of the copper matrix than micro-sized commercial Al2O3 particles. Improved thermal stability of Cu-1 wt.% Al compacts compared to Cu-3 wt.% Al2O3 compacts implies that nano-sized Al2O3 particles act more efficiently as barriers obstructing grain growth than micro-sized particles. Contrary, the lower electrical conductivity of Cu-1 wt.% Al compacts is the result of higher electron scatter caused by nano-sized Al2O3 particles.  相似文献   

8.
为研究钎焊温度对Ti60/Si3N4接头组织与力学性能的影响,采用Ag-28Cu共晶钎料在870~910℃温度区间,保温10 min条件下进行钎焊连接.利用扫描电子显微镜、能谱仪对钎焊接头界面组织进行分析,得到的典型接头界面组织结构为Ti60/Ti-Cu化合物/Ag(s,s)+Cu(s,s)/Ti-Cu化合物/Ti5Si3+TiN/Si3N4,并对钎焊接头的组织演变过程进行了分析.结果表明,随着钎焊温度的升高,Ti60侧的Ti-Cu化合物反应层与Si3N4陶瓷侧的Ti5Si3+TiN反应层厚度逐渐增加,Ag(s,s)与Cu(s,s)含量减少,同时,扩散至Si3N4陶瓷侧的Ti元素与液相中Cu元素反应生成Ti-Cu化合物并在Ti5Si3+TiN反应层中形核.剪切测试表明,在钎焊温度880℃,保温10 min工艺参数条件下获得的接头最大抗剪强度为61.7 MPa.  相似文献   

9.
周永贵  郑江 《硬质合金》2005,22(3):156-160
实验采用日本新金属公司的TiC0.7N0.3,TiC0.5N0.5两种原料粉末,比较在不同制备工艺条件下,Ti(C,N)基金属陶瓷材料的力学性能。结果表明,原料、湿磨工艺、烧结工艺、烧结后的低压热等静压显著影响合金的力学性能及金相组织。  相似文献   

10.
The aim of this work is to investigate the mechanical and tribological properties of TiCxN1−x wear resistant coatings grown on a Ti–0.2 Pd alloy substrate. Films were deposited by dual ion beam sputtering (DIBS) system with different proportions of N2 and Ar in the assisting beam. The friction tests have been carried out with a pin-on-disc tribometer with different applied loads. The films present high hardness and elastic properties whose values depend upon preparation conditions. The mechanical properties and the tribological behaviour of the coatings seem to depend on their stoichiometry and microstructure. The coating TiC0.5N0.5 shows less hardness and better wear resistance than the coating with stoichiometry TiC0.15N0.85. The influence of the stoichiometry and the local structure of the films on its mechanical properties have been ruled out.  相似文献   

11.
在900℃保温10 min的工艺条件下采用Ti含量不同的AgCu+Ti+nano-Si3N4复合钎料(AgCuC)实现了Si3N4陶瓷自身的钎焊连接,并对不同Ti元素含量的接头界面组织及性能进行了分析.结果表明,接头典型界面结构为Si3N4/TiN+Ti5Si3/Ag(s,s)+Cu(s,s)+TiNP+Ti5Si3P/TiN+Ti5Si3/Si3N4.随着复合钎料中Ti元素含量的增加,钎缝中团聚的纳米Si3N4颗粒逐渐减少,母材侧的反应层厚度逐渐增加后趋于稳定.当Ti元素含量高于4%时,钎缝中形成了类似于颗粒增强金属基复合材料的界面组织;当Ti元素含量达到10%时,有少量Ti-Cu金属间化合物在钎缝中形成;钎焊接头的抗剪强度随着Ti元素含量的增加而呈现先增加后降低的变化趋势,当Ti元素含量为6%时接头的抗剪强度达到最高值,即75 MPa.  相似文献   

12.
球磨工艺对Ti(C,N)基金属陶瓷组织和性能的影响   总被引:1,自引:1,他引:0  
采用粉末冶金法制备了Ti(C,N)基金属陶瓷。重点研究了球磨工艺包括球料比、球磨转速以及球磨时间对Ti(C,N)基金属陶瓷的组织和性能的影响。采用XRD、SEM等分析手段对制备的金属陶瓷进行了分析。研究结果表明:球磨时在球料比为7:1,抗弯强度最高;转速为400 r/min,抗弯强度为1176.4 MPa,断裂韧性12.0 MPa·m~(1/2);混料时间为24 h,抗弯强度和断裂韧性均最高,分别达到1169.2 MPa和10.5 MPa·m~(1/2)。  相似文献   

13.
While there already exit some routes to prepare carbides, highly efficient and facile routes are still desired to meet the increasing demand on carbides. By a facile solid-state reaction process using graphite-like phase of C3N4 (g-C3N4) as the carbonizing reagent, we synthesized three technologically important carbides including cubic NbC and TaC, and hexagonal WC nanoparticles at relatively low temperature (1150 °C). The products were characterized by power X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and high-resolution TEM (HRTEM). The results show that g-C3N4 is a highly efficient carbonizing reagent and the oxides Nb2O5, Ta2O5 and WO3 are completely converted into the corresponding carbides at 1150 °C, which is significantly lower than that reported for the commercial preparation of the carbides, typically >1600 °C. The NbC, TaC and WC nanoparticles are found to have an average particle size of 4, 35 and 60 nm, respectively. An important feature of this solid-state reaction process is that g-C3N4 plays double roles as both efficiently reducing and carbonizing reagent.  相似文献   

14.
The effect of sequential and continuous high-energy impact mode in the magneto-mill Uni-Ball-Mill 5 on the mechano-chemical synthesis of nanostructured ternary complex hydride Mg2FeH6 was studied by controlled reactive mechanical alloying (CRMA). In the sequential mode the milling vial was periodically opened under a protective gas and samples of the milled powder were extracted for microstructural examination whereas during continuous CRMA the vial was never opened up to 270 h duration. MgO was detected by XRD in sequentially milled powders while no MgO was detected in the continuously milled powder. The abundance of the nanostructured ternary complex hydride Mg2FeH6, produced during sequential milling, and estimated from DSC reached 44 wt.% after 188 h, and afterwards it slightly decreased to 42 wt.% after 210 and 270 h. In contrast, the DSC yield of Mg2FeH6 after continuous CRMA for 270 h was 57 wt.%. Much higher yield after continuous milling is attributed to the absence of MgO. This behavior provides strong evidence that MgO is a primary factor suppressing formation of Mg2FeH6. The DSC hydrogen desorption onset temperatures are close to 200 °C while the desorption peak temperatures for all powders are below 300 °C and the desorption process is completed within the range 10–20 min. Within the investigated nanograin size range of 5–13 nm, the DSC desorption onset and peak temperatures of β-MgH2 and Mg2FeH6 do not exhibit any trend with nanograin (crystallite) size of hydrides. TPD hydrogen desorption peaks from the powders containing a single ternary complex hydride Mg2FeH6, are very narrow, which indicates the presence of small but well-crystallized hydride particles. Their narrowness provides good evidence that the phase composition, bulk hydrogen distribution and hydride particle size distribution are very homogeneous. The overall amount of hydrogen desorbed in TPD from single-hydride Mg2FeH6 powders is somewhat higher than that observed in DSC and TGA desorption.

The powder milled sequentially for 270 h and desorbed in a Sieverts-type apparatus at 250 and 290 °C, yielded about a half of the hydrogen content obtained during DSC and TGA tests. No desorption of hydrogen was detected in a Sieverts-type apparatus at 250 and 290 °C after 128 and 70 min, respectively, from the powder continuously milled for 270 h. The latter easily desorbed 3.13 and 2.83 wt.% hydrogen in DSC and TGA tests, respectively.  相似文献   


15.
AB5-type intermetallic compounds were prepared by arc-melting in argon atmosphere. The composition of a stoichiometric compound LaNi3.6Al0.4Co0.7Mn0.3 with a hexagonal CaCu5 structure was varied by stoichiometric and nonstoichiometric addition of Ti. With the increase of the Ti y0.05 content in LaNi3.6Al0.4Co0.7Mn0.3Tiy, the hydrogen storage capacity is enhanced, whereas when y=0.1–0.3, it is decreased. The discharge capacity and cyclability are increased considerably by addition of titanium in the range of 0.02–0.1 with a maximum value at about 0.1%. The highest maximum capacity is achieved for a nonstoichiometric addition of 0.05% Ti. The kinetic properties are also additionally improved by the formation of a titanium-rich second phase. This can explain the improvement of the capacity for alloys with low Ti content. The decrease in capacity for high Ti content was also correlated with the amount of the Ti-rich phase. Therefore, the improvement of kinetics are due to the catalytic effect, grain boundary diffusion effect or more pronounced alloy pulverization upon cycling. This study has been aimed to improve the electrode properties of a series of multicomponent LaNi3.6Al0.4Co0.7Mn0.3Tiy (y=0.0, 0.02, 0.05, 0.1, 0.2, 0.3) alloys which have mutual complementary properties. All the prepared alloys have been subjected to analyses by EDS, SEM and XRD. In order to determine the hydrogen storage capacity, the pressure composition isotherms (PCT curves) have been used. The metal hydride electrodes were characterized by galvanostatic cycling test.  相似文献   

16.
Effect of Mo addition on the microstructure and mechanical properties of ultra-fine grade TiC–TiN–WC–Mo2C–Co cermets was studied in this work. Mechanical properties such as transverse rupture strength, fracture toughness and hardness were also measured. Results show that the microstructure exists in black core/grey rim structure and white core/grey rim structure, and the microstructure has an obvious trend to become finer with the increase of molybdenum content. When the added Mo exceeds 10%, ultra-fine TiC-based cermet with an average particle size of less than 0.5 μm is obtained, because of the formation of a Mo-rich rim and the improvement of the wettability between ceramic phase and metallic phase. The transverse rupture strength increases with the increase of Mo content, and the maximum values of the hardness and the fracture toughness were found with 10 wt% and 5 wt% Mo addition, respectively.  相似文献   

17.
In this investigation, MoSi2 intermetallic compound has been synthesized by reducing of MoO3/SiO2 powder mixtures by Al and carbon via mechanical alloying (MA). Powder mixtures were ball milled for 0–100 h and structural evolutions have been monitored by X-ray diffraction. In the Al system, both β-MoSi2 (high temperature phase) and -MoSi2 (low temperature phase) were obtained after 3 h of milling and after 70 h of milling the β-phase transformed to -phase. The crystallite size of -MoSi2 and Al2O3 after milling for 100 h was 12 and 17 nm, respectively. In reducing with carbon, two different compositions with nominal carbon content of 13.7 and 24 wt.% were used that in both compositions, -MoSi2 forms during 10 h of milling. Higher carbon content increases the amount of MoSi2.  相似文献   

18.
The crystal structure of the ternary Laves phase ZrTiCu2 with unusual stoichiometry has been determined from combined refinement of X-ray powder, X-ray single crystal and neutron powder intensity data. The derived structure is of type MgZn2 (space group P63/mmc) with lattice parameters a = 0.51491(3) nm, c = 0.82421(8) nm. Crystal symmetry and composition reveal a high degree of atomic disorder, because Ti and Zr atoms share the 4f sites, whereas Ti and Cu atoms are found at the 6h sites. The 2a sites, however, are exclusively occupied by Cu. Lattice parameters for alloys Zr1−xTi1−xCu2+2x (annealed at 800 °C) as a function of the concentration of Cu for a constant ratio of Zr/Ti = 1 vary in a nonlinear way, which is consistent with the described complex atomic substitution mechanism. At a load of 2 N the micro-hardness was measured to be 7.5 ± 0.3 GPa, which is significantly larger than for most of the binary Ti–Cu or Zr–Cu phases. By a density functional theory ab initio approach the site preferences of Zr, Ti and Cu were calculated indicating that a random mixture of Ti and Cu atoms at the 6h lattice sites is a key factor to stabilize the proposed structure, which is unique for a Laves phase. Lattice parameters, elastic constants and shear moduli for polycrystalline ZrTiCu2 were also derived. The Vickers hardness of 6.2 GPa was estimated by applying a correlation between shear modulus and hardness. Data as calculated by the ab initio approach are in good agreement with the experimental findings.  相似文献   

19.
The possibility of providing TiC–Al2O3 nanocomposite as a useful composite from low-cost raw materials has been investigated. Impure Ti chips were placed in a high energy ball mill with carbon black and aluminum powder and sampled after different times. XRD analysis showed that TiC has been synthesized after 10 h of milling. It could be observed from the width of XRD patterns’ peaks that the size of produced TiC crystallites is in the order of nanometer. In order to forming of TiC–Al2O3 composite, heat treatment was performed in different temperatures. Investigations have revealed that formation temperature of TiC as the dominant phase decreased for the milled specimens during heat treatment, also nanocrystalline TiC–Al2O3 composite was formed in this situation. Furthermore milling led to increase of strain and decrease of TiC lattice parameter while during heat treatment nanocrystalline grains grow up and strain decreases.  相似文献   

20.
In this study, the influence of the glass addition and sintering parameters on the densification and mechanical properties of tetragonal zirconia polycrystals (3Y-TZP) ceramics were evaluated. High-purity tetragonal ZrO2 powder and La2O3-rich glass were used as starting powders. Two compositions based on ZrO2 and containing 5 wt.% and 10 wt.% of La2O3-rich glass were studied in this work. The starting powders were mixed/milled by planetary milling, dried at 90 °C for 24 h, sieved through a 60 mesh screen and uniaxially cold pressed under 80 MPa. The samples were sintered in air at 1200 °C, 1300 °C, 1400 °C for 60 min and at 1450 °C for 120 min, with heating and cooling rates of 10 °C/min. Sintered samples were characterized by relative density, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Hardness and fracture toughness were obtained by Vickers indentation method. Dense sintered samples were obtained for all conditions. Furthermore, only tetragonal-ZrO2 was identified as crystalline phase in sintered samples, independently of the conditions studied. Samples sintered at 1300 °C for 60 min presented the optimal mechanical properties with hardness and fracture toughness values near to 12 GPa and 8.5 MPa m1/2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号