首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phase equilibria have been determined in the system CaO-Al2O3-H2O in the temperature range 100° to 1000°C. under water pressures of up to 3000 atmospheres. Only three hydrated phases are formed stably in the system: Ca(OH)2, 3CaO·Al2O3·6H2O, and 4CaO·3Al2O3-3H2O. Pressure-temperature curves delineating the equilibrium decomposition of each of these phases have been determined, and some ther-mochemical data have been deduced therefrom. It has been established that both the compounds CaO·Al2O3 and 3CaO·Al2O3 have a minimum temperature of stability which is above 1000°C. The relevance of the new data to some aspects of cement chemistry is discussed.  相似文献   

2.
The morphological changes accompanying the conversion of the hexagonal CaO·Al2O3·10H2O phase to the cubic 3CaO·Al2O3·6H2O phase were studied by scanning electron microscopy. The hydration and conversion reactions were monitored by X-ray diffraction analysis. From the micrographs, it was inferred that changes in the pore structure and the presence of large cubic crystals of questionable adhesive value were probably the principal factors responsible for the loss of strength in converted calcium aluminate cement pastes.  相似文献   

3.
The influence of citric acid on paste hydration of 3CaO· Al2O3 in the presence of CaSO4·2H2O and Ca(OH)2 was studied using X-ray diffraction, scanning electron microscopy, and conduction calorimetry. The time at which the citric acid is added (either prior to or with the mixing water) determines how it affects the reactivity of the aluminate. Immediately after the paste is gaged citric acid promotes a more rapid reaction, but later reactions are retarded. Hexagonal calcium aluminate hydrates, ettringite, and monosulfate were all detected as early hydration products. The influence of citric acid on the hydration of 3CaO·Al2O3 slabs immersed in saturated CaSO4·2H2O solutions was also studied and a reaction scheme proposed.  相似文献   

4.
Calcium hexa-aluminate (CaO·6Al2O3) has been prepared from calcium nitrate and aluminum sulfate solutions in the temperature range of 1000°–1400°C. A 0.3 mol/L solution of aluminum sulfate was prepared, and calcium nitrate was dissolved in it in a ratio that produced 6 mol of Al2(SO4)3·16H2O for each mole of Ca(NO3)2·4H2O. It was dried over a hot magnetic stirrer at ∼70°C and fired at 1000°–1400°C for 30–360 min. The phases formed were determined by XRD. It was observed that CaO·Al2O3 and CaO·2Al2O3 were also formed as reaction intermediates in the reaction mix of CaO·6Al2O3. The kinetics of the formation of CaO·6Al2O3 have been studied using the phase-boundary-controlled equation 1 − (1 − x )1/3= K log t and the Arrhenius plot. The activation energy for the low-temperature synthesis of CaO·6Al2O3 was 40 kJ/mol.  相似文献   

5.
Paste samples of tricalcium aluminate alone, with CaCl2, with gypsum, and with gypsum and CaCl2 were hydrated for up to 6 months and the hydration products characterized by SEM, XRD, and DTA. Tricalcium aluminate hydrated initially to a hexagonal hydroaluminate phase which then changed to the cubic form; the transformation rate depended on the size and shape of the sample and on temperature. The addition of CaCl2 to tricalcium aluminate resulted in the formation of 3CaO · Al2O3· CaCl2·10H2O and 4CaO · Al2O3· 13H2O, or a solid solution of the two. The chloride retarded the formation of the cubic phase 3CaO · Al2O3· 6H2O; the addition of gypsum resulted in the formation of monosulfoaluminate with a minor amount of ettringite. When chloride was added to tricalcium aluminate and gypsum, more ettringite was formed, although 3CaO · Al2O3· CaSO4· 12H2O and 3CaO · Al2O3· CaCl2· 10H2O were the main hydration products.  相似文献   

6.
Er3+-doped sodium lanthanum aluminosilicate glasses with compositions of (90− x )(0.7SiO2·0.3Al2O3)· x Na2O·8.2La2O3· 0.6Er2O3·0.2Yb2O3·1Sb2O3 (in mol%) ( x = 12, 20, 24, 40, 60 mol%) were prepared and their spectroscopic properties were investigated. Judd–Ofelt analysis was used to calculate spectroscopic properties of all glasses. The Judd–Ofelt intensity parameter Ω t ( t = 2, 4, 6) decreases with increasing Na2O. Ω2 decreases rapidly with increasing Na2O while Ω4 and Ω6 decrease slowly. Both the fluorescent lifetime and the radiative transition rate increase with increasing Na2O. Fluorescence spectra of the 4 I 13/2 to 4 I 15/2 transition have been measured and the change with Na2O content is discussed. It is found that the full width at half-maximum decreases with increasing Na2O.  相似文献   

7.
Quadrupole interactions of 11B and 27Al in SiO2-B2O3-Al2O3-R2O glass systems were investigated to determine the structure of these glasses, which should be amenable to chemical strengthening. The ratio of BO4 units to BO3 units approached unity as the R2O/Al2O3 ratio for compounds having fixed B2O3 contents approached unity. Nuclear quadrupole coupling constants ( e2Qq/h =2.73 to 2.93 MHz) were measured for the NMR spectra of 11B triangles. The line shapes of 27Al spectra varied with chemical composition, but a few glasses exhibited 27Al line shapes similar to those of the AlO4 triclusters in SiO2-Al2O3-Na2O glasses. Compositional trends in the formation of BO4 and AlO4 were deduced from the NMR spectra.  相似文献   

8.
Porous Al2O3/20 vol% LaPO4 and Al2O3/20 vol% CePO4 composites with very narrow pore-size distribution at around 200 nm have been successfully synthesized by reactive sintering at 1100°C for 2 h from RE2(CO3)3· x H2O (RE = La or Ce), Al(H2PO4)3 and Al2O3 with LiF additive. Similar to the previously reported UPC-3Ds (uniformly porous composites with a three-dimensional network structure, e.g. CaZrO3/MgO system), decomposed gases in the starting materials formed a homogeneous open porous structure with a porosity of ∼40%. X-ray diffraction, 31P magic-angle spinning nuclear magnetic resonance, scanning electron microscopy, and mercury porosimetry revealed the structure of the porous composites.  相似文献   

9.
In this work several complementary techniques have been employed to carefully characterize the sintering and crystallization behavior of CaO–Al2O3–ZrO2–SiO2 glass powder compacts after different heat treatments. The research started from a new base glass 33.69 CaO–1.00 Al2O3–7.68 ZrO2–55.43SiO2 (mol%) to which 5 and 10 mol% Al2O3 were added. The glasses with higher amounts of alumina sintered at higher temperatures (953°C [lower amount] vs. 987°C [higher amount]). A combination of the linear shrinkage and viscosity data allowed to easily find the viscosity values corresponding to the beginning and the end of the sintering process. Anorthite and wollastonite crystals formed in the sintered samples, especially at lower temperatures. At higher temperatures, a new crystalline phase containing ZrO2 (2CaO·4SiO2·ZrO2) appeared in all studied specimens.  相似文献   

10.
The cell dimensions of pure triclinic 3CaO·SiO2 and monoclinic 3CaO·SiO2 solid solution (54CaO·16SiO2·Al2O3·MgO) were determined and the powder diffraction patterns were indexed by the method of precise measurement of the spacings. The lattice constants are expressed in terms of triclinic or monoclinic cells corresponding to pseudo-orthorhombic cells derived from Jeffery's trigonal cell. The apparent lattice constants for pure 3CaO·SiO2 are a = 12.195 a.u., b = 7.104 au., c = 25.096 a.u., α= 90°, β= 89°44'γ= 89°44'; for 54CaO·16SiO2.-Al2O3MgO, a = 12.246 a.u., b = 7.045 a.u., c = 24.985 a.u., β= 90°04'. Precise lattice constants of Jeffery's monoclinic lattice for 54CaO.-16SiO2-Al2O3·MgO are derived as a = 33.091 a.u., b = 7.045 a.u., c = 18.546 a.u., β= 94°08'. High-temperature X-ray patterns showed that pure triclinic 3CaO·SiO2 transformed to a monoclinic form at about 920°C. and then to a trigonal form at about 970°C. Monoclinic 54CaO.16SiO2·Al2O3–MgO transformed to trigonal at about 830°C. These transitions were reversible and reproducible and were accompanied by only slight deformation of the structure forms.  相似文献   

11.
Liquid hydration and water-vapor hydration of 3CaO·Al2O3, were studied. Variable parameters were hydration time, temperature, relative humidity, and amount of gypsum. The hydration products (gel, ettringite, hexagonal hydrates, and 3CaO·Al2O3·6H2O) were studied by electron microscopy, X-ray diffractometry, and thermal analysis. A reaction scheme is proposed. The degree of water-vapor hydration influenced the sequence of the subsequent liquid hydration which, however, was independent of the composition of the water-vapor hydration products. Below a critical degree of water-vapor hydration (≊3% combined water) the reaction with liquid water occurred as if no water-vapor hydration had taken place. Above this value the reaction gave hydration products suggesting a change of the 3CaO·Al2O3 reactivity. A possible correlation with the retardation of strength development of prehydrated cement is suggested.  相似文献   

12.
The system CaO-Ta2O3-SiO2 was studied using a combination of hot-stage microscopy and the quenching technique. Primary crystallization fields were defined for the various calcium silicates, and for the calcium tantalates: CaO·2Ta2O5, CaO·Ta2O5, 2CaO·Ta2O5, and 4CaO·Ta2O5. A congruently melting ternary compound 10CaO·Ta2O5·6SiO2, isostructural with the mineral niocalite, is the only ternary phase in the system. A large twoliquid region extends across the system from the CaO-SiO2 binary to within 1 wt% of the Ta2O3-SiO2 binary but does not cut it, in marked contrast to the analogous CaO-Nb2O5-SiO2 system. Other somewhat unexpected differences were noted between these systems.  相似文献   

13.
The system MgO–Al2O3–2CaO·SiO2 comprises a plane through the tetrahedron CaO–MgO–Al2O3–SiO2. A total of 108 compositions were prepared having an alumina content below the line joining 2CaO·Al2O3SiO2 (gehlenite) and MgO·Al2O3 (spinel). Quenching experiments were carried out on 96 of these compositions at temperatures up to 1590°C. Three binary eutectic systems and two ternary eutectic systems are described. Compositions on this plane are of significance in an investigation of the constitution of basic refractory clinkers made from Canadian dolomitic magnesites. They also concern the compositions of certain blast furnace slags.  相似文献   

14.
The compound compositions of four aluminous cements were determined on anhydrous as well as hydrated specimens which had been heat-treated at temperatures between room temperature and 1400° C. Phases were identified by X-ray diffraction and differential thermal analysis. Specimens were also tested for transverse strength, dynamic modulus of elasticity, and thermal length change. A study of the dehydration characteristics of CaO - Al2O8 - 10H2O3 3CaO.Al2O3. 6H2O, and Al2O3. 3H2O was included. The data indicated that CaO. Al2O3 10H2O was the primary crystalline hydrate formed in the cements at room temperature. At 50° C., 3 CaO Al2O3-6H2O and Al2O3. 3H2O were formed as by-products of the dehydration of CaO.Al2O3.10H2O. When heated alone in an open system, CaO.Al2O3.10H2O did not convert to 3CaO. Al2O3. 6H2O and A12O3. 3H2O. A correlation between the mechanical properties and compound compositions was noted.  相似文献   

15.
Single-crystal X-ray and electron-diffraction studies show the existence in one polymorph of 4CaO.Al2O3. 13H2O of a hexagonal structural element with α= 5.74 a.u., c = 7.92 a. u. and atomic contents Ca2(OH)7- 3H2O. These structural elements are stacked in a complex way and there are probably two or more poly-types as in SiC or ZnS. Hydrocalumite is closely related to 4CaO.A12O3.13H2O, from which it is derived by substitution of CO32-for 20H-+ 3H2O once in every eight structural elements; similar substitutions explain the existence of compounds of the types 3CaO Al2O3.Ca Y 2- xH2O and 3CaO Al2O3 Ca Y xH2O. On dehydration, 4CaO.Al2O3.13H2O first loses molecular water and undergoes stacking changes and shrinkage along c. At 150° to 250°C., Ca(OH)2 and 4CaO.3Al2O3.3H2O are formed and, by 1000°C., CaO and 12CaO.7Al2O8. The dehydration of hydrocalumite follows a similar course, but no 4CaO.3Al2O3.3H2O is formed.  相似文献   

16.
The rates of reaction of 3CaO. Al2O3, in sulfate-containing solutions of three compositions were investigated. It was observed that the rates of calcium and sulfate uptake decreased with increasing calcium hydroxide concentration. In a further experiment using a calcium sulfate solution, which also contained NaOH, it was established that the kinetics of calcium sulfoaluminate hydrate formation are strongly dependent on the hydroxyl ion concentration. The rate of sulfate ion consumption per unit surface area of 3CaO·Al2O3 was observed to be constant during the period in which a calcium sulfoaluminate hydrate is a reaction product. The ratio of calcium-to-sulfate ions consumed in the hydration reactions investigated exceeded unity suggesting the formation of 4CaO·Al2O3· n H2O in addition to ettringite.  相似文献   

17.
The phase diagram for the ternary system MgO─P2O5─H2O at 25°C has been constructed. The magnesium phosphates represented are Mg(H2PO4)2· n H2O ( n = 4, 2, 0), MgHPO4·3H2O, and Mg3(PO4)2· m H2O ( m = 8, 22). Because of the large differences in the solubilities of these compounds, the technique which involves plotting the mole fractions of MgO and P2O5 as their 10th roots has been employed. With the exception of MgHPO4·3H2O, the magnesium phosphates are incongruently soluble. Because incongruency is associated with a peritectic-like reaction, the phase Mg2(PO4)3· 8H2O persists metastably for an extended period.  相似文献   

18.
The saturation surface of cassiterite, SnO2, was determined for liquids in the system K2O–Al2O3–SiO2 as a function of bulk composition and temperature. At fixed K2O/Al2O3 cassiterite solubility varies weakly with SiO2 concentration (76 to 84 mol%), temperature (1350° to 1550°C), and log ( f O2) (−0.7 to −5.3). Cassiterite solubility is also approximately independent of composition in liquids with molar ratios of K2O/Al2O3 lessthan equal to 1 (peraluminous liquids). As K2O/Al2O3 increases from 1 (peralkaline liquids), however, cassiterite solubility increases steeply and approximately linearly with K2O in excess of Al2O3. It is proposed that potassium in excess of aluminum combines with Sn4+ to form quasi-molecular complexes with an effective stoichiometry of K4SnO4.  相似文献   

19.
Mixtures of 0.8 moles of CaO per mole of SiO2 plus Al2O3 were prepared from lime, kaolin, and tripoli (microcrystalline quartz); the amounts of SiO2 to Al2O3 were varied to give from 0.2 to 20.7% Al2O3 by weight of dry solids. After hydrothermal treatment (170° to 175°C.), the products were examined by differential thermal analysis and by X-ray diffraction. A homogeneous solid identified as the mineral tobermorite (4CaO.5SiO2.5H2O) and containing up to 4 or 5% Al2O3 was obtained. Increasing the amount of Al2O3 in the raw mixture above about 5% resulted in the formation of the hydrogarnet 3CaO.Al2O3.SiO2.4H2O as a second phase. Allowing for the Al2O3 combined in this solid, it was indicated that slightly more Al2O3 was substituted in the tobermorite as the amount was increased in the raw mixture. It is suggested that the Al3+ ions probably assume tetrahedral coordination when substituting for the Si4+ ions.  相似文献   

20.
A graphite chamber was used for the reaction between samples of 45 or 55 wt% alumina and a mixture of metallurgical coke and potassium carbonate. Thermal treatments were conducted at 1000°C. The results suggest that the potassium attack in silica-alumina bricks is controlled by the following reactions: K2O + SiO2→ K2O → SiO2 in the glassy matrix; 3(K2O · 2SiO2) + 3Al2O3→ 2SiO2· 3(K2O · Al2O3· 2SiO2) + 2SiO2 for short times; and K2O → Al2O3· 2SiO2+ 2SiO2· K2O · Al2O3· 4SiO2 for long times. In 55 wt% alumina bricks containing corundum and tridymite, potassium also attacks those phases forming a glassy phase. The formation of kaliophilite at the matrix/mullite grain interface causes a volumetric expansion of 55.5%, resulting in cracks in the matrix. Because the kaliophilite phase is not in equilibrion with mullite, the former will react with free silica to form leucite that is more thermodynamically stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号