首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Lead zirconate titanate (PZT)-ordinary Portland cement (OPC) composites were fabricated using 40%, 50% and 60% of PZT by volume. The dielectric constants of the composites were found to be 139, 176 and 290 for composites containing 40%, 50% and 60% PZT respectively. Successful poling of the composites was achieved and the measured piezoelectric coefficient (d33) of the composites increased with PZT content. Measured d33 values for the composites with 50% and 60% PZT content were 26 and 42 pC/N respectively. These are very promising results with very high d33 values for PZT-cement composites. Moreover, using this fabrication method it is possible to produce PZT-OPC composites with more than 50% PZT by volume and that these composites have good potential for use in structural applications.  相似文献   

2.
A series of Bi2S3/LDPE composites, with low density polyethylene (LDPE) as matrix and bismuth sulfide as filler, are fabricated by a simple process. The microstructure, dielectric properties and tensile strength of the composites have been studied. The variation of dielectric properties of the Bi2S3/LDPE composites with the volume fraction of Bi2S3, frequency and temperature is discussed. The composites have significantly high dielectric constants and good thermal stability, with a quite low percolation threshold. The addition of low content of Bi2S3 significantly improves the dielectric constant of polymer matrix from 3 to above 60 at 100 Hz.  相似文献   

3.
ZnO whiskers and Sb2O3 co-modified lead zirconate titanate (denoted as PZT/ZnOw/Sb2O3) piezoelectric composites were fabricated using a solid state sintering technique. The characteristic diffraction peaks of the PZT perovskite and ZnO phases were identified from all the composites, suggesting the retention of these individual phases. The grain size of PZT was found to be reduced with Sb2O3 addition. A high relative density of 96.5%-99.1% was achieved in PZT co-doped with ZnOw and Sb2O3. Both the piezoelectric and mechanical properties of the PZT/ZnOw/Sb2O3 composites showed significant improvement over the monolithic PZT. The intrinsic effects of ZnOw and Sb2O3 on the electrical and mechanical properties of the PZT/ZnOw/Sb2O3 composites were discussed.  相似文献   

4.
In the present work, multiferroic magnetoelectric (ME) composites of ferrite and ferroelectric phases are prepared. Here, the magnetostrictive (ferrite) phase, Co1.2  yMnyFe1.8O4 (y = 0.0 to 0.4) i.e. CMFO is synthesized by chemical combustion route and the piezoelectric (ferroelectric) phase, BaZr0.08Ti0.92O3 i.e. BZT is synthesized by conventional ceramic method. Frequency dependent dielectric constant measurement from 20 Hz-1 MHz at room temperature shows usual dielectric dispersion behaviour, which may be attributed to the Maxwell-Wagner type interfacial polarization. Temperature dependent dielectric constant measurement shows two dielectric maxima, one below 100 °C and the second above 500 °C. The dielectric maxima below 100 °C corresponds to the transition temperature of the ferroelectric phase and that of above 500 °C corresponds to the transition temperature of the ferrite phase of the ME composites. It is observed that as Mn content increases in the cobalt ferrite, the phase transition temperature of the ferrite phase decreases. The static magnetoelectric voltage coefficient was measured as a function of intensity of the applied dc magnetic field. These magnetoelectric composites may have possible applications in magnetic field sensing probes and linear ME devices.  相似文献   

5.
Effective properties of three-phase electro-magneto-elastic composites   总被引:1,自引:0,他引:1  
Coupling between the electric field, magnetic field, and strain of composite materials is achieved when electro-elastic (piezoelectric) and magneto-elastic (piezomagnetic) particles are joined by an elastic matrix. Although the matrix is neither piezoelectric nor piezomagnetic, the strain field in the matrix couples the electric field of the piezoelectric phase to the magnetic field of the piezomagnetic phase. This three-phase electro-magneto-elastic composite should have greater ductility and formability than a two-phase composite in which the electric field and the magnetic field are coupled by directly bonding two brittle materials. A finite element analysis (FEA) and micromechanics based averaging of a representative volume element (RVE) are performed in this work to determine the effective dielectric, magnetic, mechanical, and coupled-field properties of an elastic matrix reinforced with piezoelectric and piezomagnetic fibers as functions of the phase volume fractions, the fiber arrangements in the RVE, and the fiber material properties with special emphasis on the poling directions of the piezoelectric and piezomagnetic fibers. The effective magneto-electric moduli of this three-phase composite are found to be less than the effective magneto-electric moduli of a two-phase piezoelectric/piezomagnetic composite, because the elastic matrix is not stiff enough to transfer significant strains between the piezomagnetic and piezoelectric fibers.  相似文献   

6.
The mechanically improved foam glass composite toughened by glass fiber was prepared by sintering technique, using waste sodium-calcium silicon flat glass powder as main raw materials. In this study, the preparation and properties of the samples were characterized by differential thermal analysis (DTA), field-emission scanning electron microscopy (FESEM) and mechanical property test. The specific strength of the composite was defined for the first time, and applied into the investigation of mechanical property. The results show that the specific improved bending strength of 10.45-22.26 MPa/(g cm− 3), and the specific compressive strength of 30.45-34.34 MPa/(g cm− 3) can be displayed when sintered at 790-815 °C with the addition of 5-25 wt.% glass fiber. Good correlations between the microstructure (in particular the fiber distribution), the high specific strength and the high modulus of elasticity of glass fibers.  相似文献   

7.
Silk reinforced gelatin based composites were prepared by compression molding. The fiber content in the composite was 20 wt.%. Tensile strength (TS), tensile modulus (TM), bending strength (BS), bending modulus (BM), impact strength (IS) and hardness of the composites were found 44.5 MPa, 0.65 GPa, 63 MPa, 3.7 GPa, 5.1 kJ/m2 and 96 shore A respectively. The environmental effect on composite was observed by simulating weathering test and the composite lost 15.2% TS at the end of 30 h of the weathering testing period. The biodegradation test shows that the composite degrades very quickly and losses 52.1% weight at the end of 24 h. Morphological analysis was carried out to observe fracture behaviour and fiber pullout of the samples.  相似文献   

8.
Power-law percolation models contain very little mechanics other than the theoretical or simulated value of a percolation threshold, the volume fraction where a connected microstructure forms. For mechanical percolation these theoretical values do not correspond well to experimental results and so the models are commonly used empirically; results are correlative rather than predictive. In recent work, the effective elastic properties of a model polymer nanocomposite were approximated using a computational micromechanics model within a Monte Carlo framework. Significantly, the statistical averages resulting from these simulations displayed distinct percolation-like behavior. Of equal interest is the distribution of properties that resulted from the randomly simulated microstructures. This strongly suggests that mechanical percolation in nanocomposites is the result of a combination of microstructural mechanisms. Analysis aimed at determining which microstructure produces what response is a challenging task if microstructure is the random variable. In this work, the effective composite properties are considered as the random variable; probability distribution functions (PDFs) of the properties at discrete volume fractions are developed using the Principle of Maximum Informational Entropy. The evolution of these PDFs with increasing volume fraction helps visualize and track the significant property changes that result from microstructural randomness.  相似文献   

9.
The effective moduli of a multi-scale composite are evaluated by a bottom-up (hierarchical) modeling approach. We focus on a two-scale structure in which the small scale includes a platelet array inside a matrix, and the large scale contains fibers inside a composite matrix. We demonstrate that the principal moduli of the multi-scale composite can be fine-tuned by the platelet arrangement and orientation. As a case study, we consider the phenomenon of fiber micro-buckling within the multi-scale composite. It is found that the compressive micro-buckling strength can be considerably increased for specific platelet orientations. The multi-scale design approach presented here can be used to generate novel families of composite materials with tunable mechanical properties.  相似文献   

10.
C/SiC composites reinforced with multilayer carbon fiber woven preforms were fabricated by isothermal chemical vapor infiltration (ICVI) process. To characterize the mechanical properties of the composites, mechanical testing was carried out under various loading conditions, including tension, bending and shear loads. The results indicated that the composites, with superior intrinsic through-the-thickness properties, exhibited high in-plane mechanical properties. Therefore, the composites developed can well meet the demands of the reusable nose cap, i.e. the easiness of near-net shaping and the capability of withstanding multidirectional mechanical and thermal stresses.  相似文献   

11.
This paper presents a method allowing the simultaneous identification of parameters governing an orthotropic law with a nonlinear shear response. Such laws appear for instance through the thickness of thick laminated composites. The tested specimen is subjected to boundary conditions similar to those of a Iosipescu setup. The strain field in the central area is processed with the so-called virtual fields method, which is an application of the principle of virtual work with particular virtual fields. The method is simulated with data obtained from finite element calculations.  相似文献   

12.
In this paper, dense short carbon fiber reinforced silicon carbide matrix composites had been fabricated by hot-pressed (HP) sintering using Al2O3 and La2O3 as sintering additives. The results showed that the combination of Al2O3 and La2O3 system was effective to promote densification of short cut carbon fiber reinforced silicon carbide composites (Cf/SiC). The whisker structure of silicon carbide was formed during the annealed treatment at 2023 K for 1 h. However, it was noted that this structure was not observed in the as-received HP material. The mechanism of forming whisker structure was not clear, but this kind of whisker structure was helpful to improve mechanical properties. The combination of grain bridging, crack deflection and whisker debonding would improve the fracture toughness of the Cf/SiC composites.  相似文献   

13.
Processing of Al/B4C composites by cross-roll accumulative roll bonding   总被引:1,自引:0,他引:1  
In the present study, Al/B4C composites were successfully produced in the form of sheets, through accumulative roll bonding (ARB) and cross-roll accumulative roll bonding (CRARB) processes. The CRARB process was performed in two steps. In the first step, the strips were roll-bonded with a draft percentage of 66% reduction, while in the second step the strips were roll-bonded with a draft percentage of 50%. The results indicated that the dispersion of the B4C particles in the CRARB process is more homogeneous than the ARB process. In addition, the tensile strength of the CRARBed composite is higher than that of the ARBed composite.  相似文献   

14.
The effect of Hf addition on microstructure and room temperature fracture toughness of cast Nb-16Si alloy was investigated. The Hf addition changes significantly the microstructural morphology of Nb-16Si alloys, which includes microstructure refinement and disappearance of eutectic colonies. Fracture toughness of the alloys improves with increasing Hf content. The improvement in fracture toughness is mainly attributed to the microstructural change by Hf addition. The Hf addition leads to a transition of Nb solid solution fracture manner from brittle cleavage to plastic stretching.  相似文献   

15.
Graphene (GP)-based polymer nanocomposites have attracted considerable scientific attention due to its pronounced improvement in mechanical, thermal and electrical properties compared with pure polymers. However, the preparation of well-dispersed and high-quality GP reinforced polymer composites remains a challenge. In this paper, a simple and facile approach for preparation of poly(methyl methacrylate) (PMMA) functionalized GP (GPMMA) via in situ free radical polymerization is reported. Fourier transform infrared (FTIR), X-ray photoelectron spectra (XPS), Raman, transmission electron microscope (TEM) and thermogravimetric analysis (TGA) are used to confirm the successful grafting of PMMA chains onto the GP sheets. Composite films are prepared by incorporating different amounts of GPMMA into the PMMA matrix through solution-casting method. Compared with pure PMMA, PMMA/GPMMA composites show simultaneously improved Young's modulus, tensile stress, elongation at break and thermal stability by addition of only 0.5 wt% GPMMA. The excellent reinforcement is attributed to good dispersion of high-quality GPMMA and strong interfacial adhesion between GPMMA and PMMA matrix as evidenced by scanning electron microscope (SEM) images of the fracture surfaces. Consequently, this simple protocol has great potential in the preparation of various high-performance polymer composites.  相似文献   

16.
A finite element micromechanical model for fibrous materials introduced in a previous work [J. Compos. Mater. 38 (4) (2004) 273] is used to further study the effects of periodic and localized fiber waviness. A periodic unit cell based on hexagonal fiber packing and sinusoidal fiber waviness was assumed as a representative volume element. Equivalent to this wavy-shaped unit cell, a straight unit cell but with wavy material-orientation is introduced. This type of homogenized continuum modeling simplifies the analysis since the wavy geometry with details of constituent materials is avoided. Thus, stiffness parameters associated with individual lamina with waviness are estimated when subject to the constraining effects of neighboring isotropic or straight fiber material layers. It is shown that the shear constraint of the added layers increases the effective moduli of the wavy layer by inhibiting the fiber straightening deformation mechanism. The local stress distribution is also examined and the potential for material failure is investigated. The methodology provides a platform to study the behavior of wavy fiber composites in a systematic manner.  相似文献   

17.
The present paper developed a three-dimensional (3D) “tension–shear chain” theoretical model to predict the mechanical properties of unidirectional short fiber reinforced composites, and especially to investigate the distribution effect of short fibers. The accuracy of its predictions on effective modulus, strength, failure strain and energy storage capacity of composites with different distributions of fibers are validated by simulations of finite element method (FEM). It is found that besides the volume fraction, shape, and orientation of the reinforcements, the distribution of fibers also plays a significant role in the mechanical properties of unidirectional composites. Two stiffness distribution factors and two strength distribution factors are identified to completely characterize this influence. It is also noted that stairwise staggering (including regular staggering), which is adopted by the nature, could achieve overall excellent performance. The proposed 3D tension–shear chain model may provide guidance to the design of short fiber reinforced composites.  相似文献   

18.
Wood flour can be converted into thermoplastics through proper benzylation treatment, which introduces large benzyl group onto cellulose and partially deteriorates the ordered structure of the crystalline regions. By changing a series of parameters, like reaction temperature, concentration of aqueous caustic solution, species of phase transfer catalyst, etc., the extent of benzyl substitution is regulated within a wide range so that a balanced thermal formability and mechanical performance of the modified wood flour is obtained. By using the properly plasticized China fir sawdust as the matrix, both discontinuous and continuous sisal fibers are compounded to produce composites from renewable resources, respectively. These all-plant fiber composites are characterized by moderate mechanical properties and full biodegradability, and might act as alternative to petro-based materials in terms of structural applications.  相似文献   

19.
Titanium carbide ceramic is a good potential material used in high temperature environment for its good strength, erosion resistance and thermal stability. Unfortunately, the low thermal shock resistance and low fracture toughness are the well-known impediments to its application as high temperature structure components. In order to extend the application of TiC ceramics at high temperature, 20 vol.% short carbon fiber was added into TiC matrix to improve the thermomechanical properties. With the incorporation of carbon fiber, the thermal expansion coefficient of TiC composites was decreased and the thermal conductivity was increased slightly below 900 °C. The flexural strength was improved from 471 MPa for monolithic TiC to 593 MPa for TiC composites, and the strengthening effect of carbon fiber became more prominent at high temperatures. The addition of fiber decreased the elastic modulus of TiC composite. The elastic modulus of the composite decreased with increasing temperature. The improvement of high temperature strength and thermal conductivity and the decrease of thermal expansion will benefit the application of TiC composites in high temperature environment where the temperature usually varies.  相似文献   

20.
In the present work, carbon nanotube (CNT) fibers had been embedded to glass fiber reinforced polymers (GFRP) for the structural health monitoring of the composite material. The addition of the conductive CNT fiber to the non-conductive GFRP material aims to enhance its multi-function ability; the test specimen’s response to mechanical load and the insitu CNT fiber’s electrical resistance measurements were correlated for sensing and damage monitoring purposes. It is the first time this fiber is used in composite materials for sensing purposes; CNT fiber is easy to be embedded and does not downgrade the material’s mechanical properties. Various incremental loading–unloading steps had been applied to the manufactured specimens in tension as well as in three-point bending tests. The CNT fiber worked as a sensor in both, tensile and compression loadings. A direct correlation between the mechanical loading and the electrical resistance change had been established for the investigated specimens. For high stress (or strain) level loadings, residual resistance measurements of the CNT fiber were observed after unloading. Accumulating damage to the composite material had been calculated and was correlated to the electrical resistance readings. The established correlation between these parameters changed according to the material’s loading history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号