首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
ABSTRACT

The effects of Mo and Ni on the microstructure and properties of compacted graphite iron were investigated experimentally, especially with regard to the thermal conductivity at elevated temperature. It was found that the ferrite fraction is weakly affected by Mo content but significantly reduced by Ni addition. Moderate content of Mo is beneficial to the tensile strength and the elongation, but it is detrimental for the thermal conductivity, which is more obvious than Ni. The phenomenon that thermal conductivity increases and then decreases at elevated temperature, which is named temperature dependence, could be connected with the lattice distortion of the matrix caused by solute atoms. With the addition of Mo or Ni, the rising amplitude of thermal conductivity increases as well as the temperature corresponding to the maximal of thermal conductivity. Besides, the effects of Mo on the temperature dependence of thermal conductivity are higher when compared with Ni.  相似文献   

3.
This paper presents some data on the microstructural features and mechanical properties of as-cast compacted graphite iron (CGI), produced through treatment with a special Ca-CaC2-Mg masteralloy. Information on graphite morphology and matrix features, obtained using different numerical indices evaluated through a computer-based image-analyzing system and SEM observation of deep-etched specimens, shows that the graphite form is a mixture of ASTM types I, II, and III (compacted graphite), interspersed in a matrix with a 2:1 ratio of pearlite to ferrite. An average hardness (BHN) of 219, Charpy-V-Impact energy of 7.92 J, tensile strength of 354.5 MPa, and a corresponding elongation of 1.20% has been obtained for the as-cast iron. The fracture surfaces of tensile and room temperature impact tested specimens showed mixed modes of fracture.  相似文献   

4.
Laser-assisted machining of compacted graphite iron   总被引:2,自引:0,他引:2  
Compacted graphite iron (CGI) is a material currently under study for the new generation of engines, including blocks, cylinder liners, and cylinder heads. Its unique graphite structure yields desirable high strength, but makes it difficult to machine, thus resulting in a machining cost. Laser-assisted machining (LAM) is adopted to improve its machinability and hence machining economics. The machinability of CGI is studied by varying depth of cut, feed, and material removal temperature and then evaluating resultant cutting forces, specific cutting energy, surface roughness, and tool wear. At a material removal temperature of 400 °C and a feed of 0.150 mm/rev at a cutting speed of 1.7 m/s, it is shown that tool life is 60% greater than conventional conditions at a feed of 0.100 mm/rev. Surface roughness is improved 5% as compared to conventional machining at a feed of 0.150 mm/rev. CGI microstructure evaluated post machining by sectioning and polishing shows no change. An economic analysis shows that LAM can offer an approximately 20% cost savings for the machining of an engine cylinder liner.  相似文献   

5.
The demands for improved engine performance,fuel economy,durability,and lower emissions provide a continual challenge for engine designers.The use of Compacted Graphite Iron(CGI)has been established for successful high volume series production in the passenger vehicle,commercial vehicle and industrial power sectors over the last decade.The increased demand for CGI engine components provides new opportunities for the cast iron foundry industry to establish efficient and robust CGI volume production processes,in China and globally.The production window range for stable CGI is narrow and constantly moving.Therefore,any one step single addition of magnesium alloy and the inoculant cannot ensure a reliable and consistent production process for complicated CGI engine castings.The present paper introduces the SinterCast thermal analysis process control system that provides for the consistent production of CGI with low nodularity and reduced porosity,without risking the formation of flake graphite.The technology is currently being used in high volume Chinese foundry production.The Chinese foundry industry can develop complicated high demand CGI engine castings with the proper process control technology.  相似文献   

6.
应用热分析技术对比了蠕墨铸铁、灰铸铁和球墨铸铁的热分析曲线特征,研究了蠕化、孕育作用衰退时间对蠕化率及热分析曲线的影响规律。试验表明,蠕墨铸铁热分析曲线最大共晶过冷温度与球墨铸铁相当,再辉现象明显;随着衰退时间延长,奥氏体初生温度呈上升趋势,蠕墨铸铁共晶最低温度下降,再辉温度逐渐升高;当转变为灰铸铁后共晶最低温度突然上升,再辉温度降低。  相似文献   

7.
While the manufacture of compacted graphite (CG) iron castings has seen significant expansion over the recent years, the growth of CG during iron solidification is still not fully understood. In this work, effort was expanded to experimentally reveal the evolution of graphite shape during early solidification and its relationship to the solid fraction. To this purpose, interrupted solidification experiments were carried out on hypereutectic irons with three magnesium levels. The graphite shape factors were measured and analysed as a function of chemical composition and solid fraction. Scanning electron microscopy was carried out to establish the fraction of solid at which the transition from spheroidal graphite (SG) to CG occurs. It was confirmed that solidification started with the development of SG for all CG irons. The SG-to-CG transition was considered to occur when the SG developed a tail (tadpole graphite). The findings were integrated in previous knowledge to attempt an understanding of the solidification of CG iron.  相似文献   

8.
The shape of the freezing zone of a thermal analysis cooling curve not only contains the information about the modification level of compacted graphite cast iron (CGI) right after vermicularizing treatment, but also reflects the following fading process during holding. When the freezing zones of two cooling curves are approximately the same, graphite morphologies of the samples cast from the two corresponding melts right after vermicularizing treatment are similar, and those of the two corresponding samples cast after holding for the same period are similar too. Based on the pattern recognition method and database established from a large amount of experimental results, the shape of the freezing zone of a cooling curve can be used to identify the modification level of CGI melt and on-line prediction of a CGI melt quality has been realized.  相似文献   

9.
Tensile strength, fracture toughness and impact properties were evaluated in compacted graphite (CG) cast iron with ferritic, pearlitic and ausferritic microstructures. Ultimate tensile strengths for the ferritic and pearlitic samples were 337 and 632 MPa respectively. The austempered samples showed a significant increment in the strength and recording values between 675 and 943 MPa. The fracture toughness test revealed that the stress–intensity factor KIC was 34·0 MPa m1/2 for the ferritic CG iron, 39·7 MPa m1/2 for the pearlitic and between 51·0 and 58·0 MPa m1/2 for the austempered irons. On the other hand, CG iron with ferritic matrix exhibited the best impact properties with absorbed energy of 33·3 J. The absorbed energy of the pearlitic CG iron was the lowest, 14·3 J, while the austempered samples showed values between 17·2 and 28·4 J. Complementing these results, the critical crack size was also analysed.  相似文献   

10.
Most iron castings retain their as cast surfaces because of their geometric complexity and to minimise the machining costs. However, the mechanical properties that are documented in standards (i.e. ASTM) are tested on fully machined test bars. Therefore, the effect of the as cast surface and subsurface features (commonly referred as ‘casting skin’) on mechanical properties should be evaluated. Preliminary works have shown the negative effect of the casting skin on mechanical properties of grey and ductile irons. This paper reviews the recent works on the casting skin effect on tensile and fatigue properties in compacted graphite and ductile irons. It was found that the tensile and fatigue strength were reduced by 9 and 40% respectively because of the presence of the casting skin. In addition, the correlations between processing parameters (e.g. nodularity and section thickness) and the casting skin features were presented. The experimental results suggest that the Mg depletion because of metal–mould and metal–air interactions was the main reason for the formation of the casting skin.  相似文献   

11.
试验设计了 5种不同硅含量的蠕墨铸铁铁液,分析了硅含量对蠕墨铸铁凝固的热分析曲线特征值TEU、TER、△Tr和蠕墨铸铁蠕化率的影响.试验结果表明:(1)在本次试验的硅含量范围内,蠕墨铸铁热分析曲线的特征值TEU和TER先是随着硅的增加而上升,然后,变化不明显;(2)蠕墨铸铁共晶温度回升特征值△Tr随着硅含量的增加呈下降...  相似文献   

12.

The initiation and propagation of thermal fatigue cracks in gray cast iron and vemicular graphite cast iron were investigated by Uddeholm method to reveal the complex thermal fatigue behaviors of cast iron. Differences of thermal fatigue behaviors of gray cast iron and vemicular graphite cast iron were observed and analyzed. It is found that the observed differences are related to the combination of graphite morphology and the oxidization of matrix. More oxidized matrix is observed in gray cast iron due to its large specific surface area. The brittle oxidized matrix facilitates the propagation of microcracks along the oxidization layer. By contrast, the radial microcracks are formed in vermicular graphite at the edge of graphite due to fewer oxidization layers. It indicates that the thermal fatigue resistance of gray cast iron is dominated by graphite content and morphology while that of vermicular graphite cast iron strongly relates to the strength of the matrix.

  相似文献   

13.
Cast iron with good mechanical and thermal combination property is preferred material for the cylinder head of high power density diesel engine. Interface between graphite and matrix should play a key role in thermal conductivity of cast iron. However, it is difficult to measure the interfacial contact thermal conductance (ICTC) between graphite inclusion and matrix in cast iron. In this paper, a modeling experimental sample containing a macroscopic interface is designed and ICTC can be estimated with the aid of finite element (FE) calculation. At last the effect of ICTC on the thermal conductivity of cast iron is assessed according to the change of metallographic FE simulation results before and after considering ICTC. Results show that the magnitude of ICTC is between 1.0 × 105 and 2.0 × 105 W m?2·K on the whole. The interface makes the theoretical thermal conductivity of cast iron drop down 34.6%.  相似文献   

14.
通过模拟蠕墨铸铁制动受热变形试验,采用薄片试样,模拟列车蠕墨铸铁制动盘使用时的受力情况,设计受热变形试验工装,给予试样两端一个相同的、较小的变形量(弹性变形范围内),模拟列车制动工况温度150℃,加热保温30 h,自然冷却后,在自由状态下测量试样的永久变形量,对试验数据进行统计分析,通过重复做多组试验来研究不同石墨蠕化...  相似文献   

15.
Thermomechanical fatigue properties of a compacted graphite iron in an out of phase configuration are investigated for different maximum temperatures and mechanical strain ranges. Furthermore, the stress–strain hysteresis loops are analysed, and, in particular, the unloading modulus, i.e. the elastic modulus measured during specimen unloading, is obtained from each cycle. This material parameter has earlier been explicitly related to the amount of microcracking in cast irons. The results show that the unloading modulus linearly declines with the numbers of cycles in all tests performed. In addition, the rate of change of the unloading modulus is closely related to the number of cycles to failure. Accordingly, it is concluded that microcracks are independently propagated by fatigue until a point of rapid crack linking resulting in ultimate failure. This is supported by microstructural analyses consisting of optical microscope images taken at different stages throughout the life of a specimen.  相似文献   

16.
描述了基于热分析手段的蠕铁生产过程控制系统。该系统通过测量镁的损耗,以及在线调整铁液状态来防止片状石墨的产生。这种测量、调整的在线控制手段使生产蠕铁过程中的波动性降到最低,从根本上消除了蠕铁生产所带来的质量风险。  相似文献   

17.
In tribological system, friction pairs are the core.Different friction pairs show different tribologicalcharacteristics. Dry sliding friction means that there is noliquid lubricator in the process of wear and friction. Inmost cases, friction surfaces contact each other directly,while under some operating conditions, there exists solidlubricant. Among many friction pairs studied, the drysliding friction pairs with background of practicalapplication for brake system increasingly attract theatten…  相似文献   

18.
Various experiments were performed to investigate the wear mechanism of cubic boron nitride (cBN) tools used for the machining of compacted graphite iron (CGI). Comparative studies for tools used to machine grey cast iron (CI) were also performed in order to find out why in this case the tool lifetime is significantly higher. Two main effects were found that are responsible for tool wear, namely: (1) oxidation of the tool, and (2) interdiffusion of constituting elements between tool and CGI. These wear mechanisms are more or less the same for the machining of CGI and grey CI. The difference in tool lifetime can be explained by the formation of a MnS layer on the tool surface in the case of grey CI. This layer is missing in the case of CGI. The MnS layer acts as a lubricant and as a diffusion barrier and is the reason for the reduced wear in the case of grey CI.  相似文献   

19.
Graphite length is an important item in metallographic inspection of grey iron. Computer aided quantitative metallography is developed rapidly and has become a major analytical tool nowadays. Based-moment threshold selection was adopted to binarize the metallographic image in this study. A new approach has been developed to measure the length of the graphite in cast iron with high precision. The results are in good agreement with China National Metallographic Inspection Standard Charts for Grey Iron (GB7216-87) and ASTM (A247-67). An objective and precise measurement of graphite length in grey iron is critical for developing models correlating microstructure and properties of cast iron.  相似文献   

20.
The relationships of cooling rate with microstructure and thermal conductivity of vermicular graphite cast iron(VGI) cylinder block were studied, which are important for design and optimization of the casting process of VGI cylinder blocks. Cooling rates at different positions in the cylinder block were calculated based on the cooling curves recorded with a solidification simulation software. The metallographic structure and thermal conductivity were observed and measured using optical microscopy(OM), scanning electrical microscopy(SEM) and laser flash diffusivity apparatus, respectively. The effects of the cooling rate on the vermicularity, total and average areas of all graphite particles, and the pearlite fraction in the VGI cylinder block were investigated. It is found that the vermicularity changes in parabola trend with the increase of cooling rate. The total area of graphite particles and the cooling rate at eutectoid stage can be used to predict pearlite fraction well. Moreover, it is found that the thermal conductivity at room temperature is determined by the average area of graphite particles and pearlite fraction when the range of vermicularity is from 80% to 93%. Finally, the quantitative models are established to calculate the vermicularity, pearlite fraction, and thermal conductivity of the VGI cylinder block.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号