首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
以304不锈钢薄板为研究对象,设计了双因素析因试验方案,研究了在焊接速度、离焦量和激光脉冲频率不变时,脉冲峰值功率和脉宽对不锈钢脉冲YAG激光焊缝熔深和熔宽的影响规律,并利用方差分析法研究了脉冲参数及其交互作用对焊缝成形质量的影响显著性。结果表明,激光脉冲峰值功率和脉宽对不锈钢激光焊缝的熔深和熔宽都具有非常显著的影响,其中,脉冲峰值功率的影响显著性要大于脉宽。脉冲峰值功率与脉宽的交互作用对焊缝熔宽的影响非常显著,而对焊缝熔深的影响为显著。  相似文献   

2.
激光焊接参数对冷作模具钢焊缝表面成形的影响   总被引:1,自引:1,他引:0  
利用激光焊机在Cr13Mo1Si1V1冷作模具钢表面进行自熔焊接试验,探讨了脉冲激光焊接工艺参数对焊缝横断面形貌尺寸的影响.结果表明:随着激光脉冲能量的增大,焊缝熔深及表面宽度都明显增大;随着脉冲宽度的增大,熔深增长不明显,但表面宽度却明显减小;随着脉冲频率的提高,焊缝熔深及熔宽均减小;加大光斑直径会导致加热区域扩大,熔深减小.采用脉冲激光焊接该模具钢时,脉冲能量和光斑直径对熔深的影响较大;脉冲宽度对表面宽度的影响较明显;脉冲频率对焊缝横断面形貌尺寸的影响相对较小.  相似文献   

3.
使用ANSYS有限元分析软件对5052铝合金薄板脉冲激光焊接过程进行温度场模拟,模型使用了三维锥体热源,通过模拟结果与试验结果的对比确认了模型的可靠性。通过分别改变峰值功率、脉宽和频率,分析了各焊接参数对焊缝截面形状及表面最高温度的影响。结果表明,焊缝的熔深、熔宽和表面最高温度均随峰值功率、脉宽或频率的增加而增加,其中,峰值功率对这些焊缝参数的影响最大,脉宽次之,频率最小。采用低单脉冲能量、高频率的参数设定能在获得较低的焊缝表面最高温度的同时,获得一定的熔深。  相似文献   

4.
采用不同的工艺参数对SUS304不锈钢薄板进行脉冲激光焊,使用金相显微镜和扫描电镜观察焊缝的金相组织、气孔形貌,并对接头进行拉伸试验和微观硬度测试。结果表明:不锈钢薄板激光脉冲焊一般不产生冶金气孔,不当的焊接工艺可能产生不规则的和圆锥形两种尺寸较大的工艺气孔,严重降低接头成形质量;适当提高脉冲频率和增大脉宽可以有效提高焊缝质量,当脉冲频率为14Hz,脉宽为3 ms时,焊缝气孔可基本消除。  相似文献   

5.
采用400WYAG固体激光器对2Cr13不锈钢进行了激光焊接工艺研究,分析了脉宽、频率、电流、脉冲波形对其焊缝成型及表面质量的影响.结果表明,脉宽增加,焊缝宽度、熔深增加,焊缝凹陷也增加;频率越高,焊缝宽度越窄,熔深越浅;电流增大,熔深、焊缝宽度和焊缝凹陷也相应增加;电流逐渐增大的波形对金属熔化形成熔池具有缓冲作用,焊缝凹陷较小;(200A×4ms+250A×2ms)×20Hz的电源参数适合2mm的2Cr13不锈钢板材的焊接.  相似文献   

6.
脉冲熔化极气体保护焊(GMAW-P)是一种重要的焊接方法,其生产效率高,在航天航空、造船等领域有着广泛的应用.GMAW-P的熔滴过渡过程的稳定性是获得优质焊接质量的保证,因此通过研究在不同峰值条件下进行焊接,将堆焊焊件断面进行焊缝形状分析,可得出脉冲焊接参数对GMAW-P熔滴过渡行为和焊缝成形的影响.试验证明,在平均焊接电流110 A,电弧电压24.9 V的条件下,随峰值时间增加形成多脉一滴、一脉一滴、一脉多滴等过渡形式对焊缝成形影响没有明显变化.  相似文献   

7.
采用脉冲激光对薄片状TiNi合金进行对接焊.研究了激光焊接工艺参数对焊缝表面成形及焊缝组织的影响。结果表明,0.2mm厚TiNi合金薄片脉冲激光对接焊时易出现烧穿;激光峰值功率、脉冲宽度以及脉冲频率对焊缝成形有较大的影响。焊缝熔深和熔宽随着这三个参数的增大而增加。当激光峰值功率为1.0kW、脉冲频率和脉冲宽度分别在5-9Hz和1.5~2.3ms之间取值时,焊缝成形良好。焊缝组织由中心部位的等轴晶和边缘细小的柱状晶组成。  相似文献   

8.
李林贺  邓适 《焊接技术》2013,42(7):30-32
针对动力电池壳、盖激光焊接试验,通过调整激光焊机脉宽、频率、峰值功率等工艺参数,验证不同参数对激光单点能量及焊接平均功率的影响,结合平均功率对焊缝熔深影响及不同熔深状态下与焊缝耐压强度的对应关系,进而优化激光焊接工艺参数,确保动力电池激光焊接过程的稳定性和焊接质量的一致性。  相似文献   

9.
钛合金激光穿透焊的焊缝成形(I)   总被引:2,自引:0,他引:2       下载免费PDF全文
在对钛合金激光穿透焊焊缝成形特征分析的基础上研究了激光焊主要工艺参数对焊缝成形的影响,同时对比研究了CO2激光和YAG激光穿透焊时焊缝成形的差异。研究结果表明,在穿透焊条件下,CO2激光和YAG激光焊接钛合金焊缝都具有钉形和近X形两种典型的截面形貌。焊缝成形与焊接热输入及激光功率密度有密切联系。随焊接热输入和激光功率密度的增大,焊缝截面由钉形向近X形转变。在采用同样工艺规范获得近X形焊缝成形时,YAG激光焊缝的对称度显著高于CO2激光焊缝。通过调整激光功率、焊接速度和离焦量等激光焊工艺参数,可以对焊缝成形进行有效控制,提高焊接接头质量。  相似文献   

10.
为了改善钛合金薄板激光焊接过程中因工装误差或存在毛刺造成的焊穿、焊漏等缺陷,采用光纤激光器对1.2 mm厚的Ti6Al4V薄板进行脉冲激光焊接试验。分析脉冲频率、对接间隙及激光峰值功率3个工艺条件对焊缝成形的影响,针对外观成形较好的焊缝进行显微组织与力学性能测试,确定了适合Ti6Al4V薄板拼焊的最佳焊接工艺参数。结果表明,采用脉冲频率40 Hz,占空比60%,激光峰值功率2.0 kW,光斑直径0.7 mm,焊接速度1.8 m/min的脉冲激光焊接工艺可以获得质量优异的焊缝;焊缝由粗大的柱状β晶粒和针状α′相组成,热影响区形成了短针状α′相;随着峰值功率的增大,焊缝的显微硬度明显增大,抗拉强度逐渐减小。最优焊接工艺参数下的焊缝强度可以达到母材的98%,拉伸断口表面平整、规则,断面与拉伸轴线方向呈45°,断口含有大量韧窝。  相似文献   

11.
通过试验研究了Nd:YAG激光 脉冲GMAW复合热源焊接过程中焊接工艺参数对焊缝熔宽的影响.结果表明,复合热源焊缝熔宽随电弧功率和激光功率的增大而增大,随焊接速度的提高而减小,而光丝间距和离焦量对复合热源焊缝熔宽影响相对较小.复合热源焊缝熔宽远大于激光焊缝熔宽而仅稍大于脉冲GMAW焊缝熔宽,说明在复合热源焊接过程中脉冲GMAW决定焊缝熔宽,这主要是由于激光束加热区域远小于电弧加热区域造成的.试验结果的分析比较还表明,在激光 电弧复合热源焊接过程中激光功率的增大还极大地提高了焊接速度.  相似文献   

12.
In laser+P-GMA hybrid welding,laser-wire distance is an important parameter to describe the distance from laser spot to the center of the pulsed gas metal arc.The experiments results show that the optimal laser-wire distance with the deepest weld penetration increases with welding current and laser power being increased and decreases with welding speed being increased.Welding current,laser power and welding speed determine the hybrid welding heat input in laser+arc hybrid welding process,so there is a correlation between the optimal laser-wire distance and the hybrid heat input welding parameters for the deepest weld penetration: the optimal laser-wire distance increases with the heat input being increased.The positive correlation between the optimal laser-wire distance and the hybrid welding heat input is induced by the characteristics of the limited influence of P-GMA welding process on laser transmission and the dependence of weld penetration of hybrid welding on laser power.  相似文献   

13.
YAG激光与脉冲MIG复合焊接   总被引:6,自引:1,他引:6       下载免费PDF全文
研究了YAG(掺钕钇铝石榴石 ,Nd 3:Y3Al5O1 2 )激光与脉冲MIG电弧复合焊接铝合金的新工艺 ,设计制造了复合焊接机头 ,探讨了各种规范参数对焊缝成形的影响规律及激光与电弧的复合作用。结果表明 ,在比较宽的参数范围内YAG激光 -脉冲MIG复合焊接铝合金焊缝成形美观 ,无气孔等缺陷 ,熔深与激光单独焊比增加 4倍 ,与脉冲MIG焊接比增加 1倍以上 ,焊速显著提高 ,是一种理想的焊接工艺。  相似文献   

14.
研究激光束焊接工艺参数如激光功率、焊接速度和焦点位置对AZ31B镁合金力学性能和显微组织的影响。采用不同的激光功率、焊接速度和焦点位置焊接了9种接头。焊接接头的拉伸性能与焊接区的微观组织和硬度有关。结果表明,采用激光功率2500W,焊接速度5m/min,焦点位置-1.5mm时,所得的接头具有优良的拉伸性能。焊接区细晶粒的形成、较高的融化区硬度、均匀分布的细小析出物是得到优良拉伸性能的主要原因。  相似文献   

15.
探讨了焊接工艺参数包括激光功率、焊接速度、正面和背面的保护气体流量对焊接工艺效果和接头成形的影响.结果表明,对AZ61和AZ31两种镁合金,激光功率的增大,焊缝正面和背面的熔宽都明显增大;而焊接速度的增大,焊缝正面和背面的熔宽明显减小.在同样的工艺参数情况下,AZ61的熔化效率比AZ31更高,获得的焊缝正面和背面熔宽更大.正面的保护气体流量大小对焊缝熔宽的影响较小,而背面保护气体流量对焊缝熔宽基本没有影响,但正面和背面气体流量主要影响到焊缝正反面的保护效果,影响到焊缝的表观.试验结果表明,在适当的工艺参数下,采用CO2激光焊接方法可以较好地实现不同厚度的AZ61和AZ31镁合金的焊接,而且焊缝成形良好,接头的力学性能优良.  相似文献   

16.
利用基于COMSOL Multiphysics的脉冲激光-气体钨极电弧(GTA)混合焊接新型双热源模型,分析了焊缝沿线选定点的温度分布,研究了激光脉冲参数和电弧电流对熔池形貌的影响。工艺参数对熔池深度的影响由大到小为:激光激励电流>电弧电流>激光脉冲宽度>激光脉冲频率;工艺参数对熔池宽度的影响由大到小为:电弧电流>激光脉冲宽度或激光激励电流>激光脉冲频率。在此基础上,构建了激光诱导电弧焊接镁合金熔池形貌数据库体系,通过复合热源参数的分级调控,以实现对熔池形貌的精准控制。利用T形焊接熔池来验证熔池形貌的调控效果,结果表明控形的准确度高至95.1%。  相似文献   

17.
比较了高功率CO2激光和YAG激光焊接不锈钢时的特点,分析了工艺参数对焊缝形状和接头显微组织的影响。  相似文献   

18.
针对聚变堆用316LN奥氏体不锈钢材料,分别在连续激光和脉冲激光模式下进行了激光填丝焊接试验。主要研究了不同焊接工艺参数下的焊丝熔入特征及其对焊缝质量的影响,并对连续激光与脉冲激光焊接熔池流动及熔池形貌、接头的显微组织进行了研究。结果表明,连续激光填丝焊和脉冲激光填丝焊在合适的焊接工艺参数下均能获得焊丝液桥过渡,且熔池铺展均匀、焊缝成形良好。与脉冲激光填丝焊相比,连续激光填丝焊在坡口中的熔池长度约是脉冲激光填丝焊的3倍,温度梯度较大,更易产生侧壁未熔合和贯穿焊缝中心的凝固裂纹等缺陷。连续激光填丝焊的焊缝显微组织以柱状晶为主,由焊缝两边向焊缝中心生长,方向性强。脉冲激光填丝焊的焊缝两侧显微组织以柱状晶为主,各个区域都受到了相邻脉冲的重复作用,具有周期性,产生二次结晶,有助于熔池的搅动和晶粒细化,打乱了枝晶生长的方向性;焊缝中心区域为方向各异的柱状晶和等轴晶,枝晶间距减小,能够抑制裂纹的产生。 创新点: 首次提出通过脉冲激光调控结晶形态以抑制厚板焊接中裂纹的焊接工艺,可在不添加任何外部设备的基础上实现对裂纹的有效控制,打破了传统焊接工艺带来的局限性。  相似文献   

19.
铝基复合材料SiCW/6061Al的激光焊接   总被引:6,自引:3,他引:3       下载免费PDF全文
采用脉冲激光焊接工艺研究铝基复合材料SiCw/6061Al的焊接性,着重探讨激光输出功率(P)、脉冲频率(f) 对接头性能的影响,借助X射线衍射、扫描电镜、透射电镜等手段分析接头组织。研究发现,焊缝中存在的界面反应物、气孔缺陷,是导致该种材料焊接性显著降低的主要因素。进一步研究表明,在激光焊接条件下铝基复合材料界面反应是不可避免的,反应物沿热流方向生成,具有一定的方向性,激光输出功率是影响SiC-Al界面反应的主要因素,同时提高脉冲频率将对界面反应有一定的抑制作用;焊缝中气孔随激光脉冲频率的增大而减少直至消失。在此基础上,通过制定合理的焊接工艺,获得了成形良好的铝基复合材料激光焊焊缝。  相似文献   

20.
研究了304不锈钢脉冲Nd:YAG激光TIG电弧复合热源焊接工艺参数对焊缝成形的影响.结果表明,脉冲Nd:YAG激光/TIG电弧复合焊焊缝横截面面积大于单一激光焊焊缝横截面面积与单一TIG焊焊缝横截面面积之和,具有协同效应;激光功率增大时,复合焊焊缝熔深和熔宽均增大,复合焊焊缝横截面面积增大,复合热源热效率也增大;离焦...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号