首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
薄壁钢结构构件局部与整体稳定相关作用问题是一个相当复杂的研究课题,精确地分析必然要涉及到材料和几何非线性,给问题的解决增加了很大的难度。本文提出了一种有效的分析方法,把局部屈曲的薄壁压弯构件等效成若干个局部屈曲的小波段所组成的梁柱模型,通过建立短柱段超屈曲后的M-P-Φ曲线,用有限积分法获得压弯构件的相关屈曲承载能力。进行了冷弯槽钢截面柱的受压试验,试验与理论分析结果符合良好。  相似文献   

2.
Thin-walled cold-formed steel members have wide applications in building structures. They can be used as individual structural framing members or as panels and decks. In general, cold-formed steel beams have open sections where centroid and shear center do not coincide. When a transverse load is applied away from the shear center it causes torque. Because of the open nature of the sections, torsion induces warping in the beam. This paper summarizes the research on the behavior of cold-formed steel beams subject to torsion and bending. The attention is focused on beams subject to torque, because of the effect of transverse loads not applied at the shear center. A simple geometric nonlinear analysis method, based on satisfying equilibrium in the deformed configuration, is examined and used to predict the behavior of the beams. Simple geometric analyses, finite element analyses and finite strip analyses are performed and compared with experimental results. The influence of typical support conditions is studied and they are found to produce partial warping restraint at the ends. This effect is accounted for by introducing hypothetical springs. The magnitude of the spring stiffness is assessed for commonly used connections. Other factors that affect the behavior of cold-formed steel members, such as local buckling, are also studied.  相似文献   

3.
新型冷弯箱形组合截面受弯构件力学性能研究   总被引:2,自引:1,他引:1  
武胜  张素梅 《工业建筑》2008,38(2):91-96
冷弯薄壁双轴对称箱形截面具有形心、弯心重合的特点,与单轴对称开口截面相比具有抗弯、扭刚度大的优点。基于箱形截面的以上特点,应用冷弯∑形构件两两电弧点焊连接,形成两种新型箱形组合截面——翼缘对焊箱形组合截面和翼缘叠焊箱形组合截面。采用非线性有限元的分析方法,通过对两种新型截面与相同参数的单肢∑形构件的细致比较分析,以及单一参数变化条件下新型截面构件的屈曲模式、变形过程、弯矩-曲率关系等方面的分析,全面研究两种新型截面受弯构件的静力学性能。研究表明:两种新型截面构件与其单肢∑形构件相比,具有抗弯承载力明显提高,构件不会出现畸变屈曲、局部变形小等性能优势,可以深入研究并合理推广使用。  相似文献   

4.
The objectives of this study are to investigate the structural behaviour and evaluate the appropriateness of the current direct strength method on the design of cold-formed steel stiffened cross-sections subjected to bending. The stiffeners were employed to the web of plain channel and lipped channel sections to improve the flexural strength of cold-formed steel sections that are prone to local buckling and distortional buckling. An experimental investigation of simply supported beams with different stiffened channel sections has been conducted. The moment capacities and observed failure modes at ultimate loads were reported. A nonlinear finite element model was developed and verified against the test results in terms of strengths, failure modes and moment–curvature curves. The calibrated model was then adopted for an extensive parametric study to investigate the moment capacities and buckling modes of cold-formed steel beams with various geometries of stiffened sections. The strengths and failure modes of specimens obtained from experimental and numerical results were compared with design strengths predicted using the direct strength method specified in the North American Specification for cold-formed steel structures. The comparison shows that the design strengths predicted by the current direct strength method (DSM) are conservative for both local buckling and distortional buckling in this study. Hence, the DSM is modified to cover the new stiffened channel sections investigated in this study. A reliability analysis was also performed to assess the current and modified DSM.  相似文献   

5.
Compression tests of welded section columns undergoing buckling interaction   总被引:1,自引:0,他引:1  
This paper describes a series of compression tests performed on welded H-section and channel section columns fabricated from a mild steel plate of thickness 6.0 mm with nominal yield stress of 240 MPa. The ultimate strength and performance of the compression members undergoing nonlinear interaction between local and overall buckling were investigated experimentally and theoretically. The compression tests indicated that the interaction between local and overall buckling had a significant negative effect on the ultimate strength of the thin-walled welded steel section columns. The Direct Strength Method (DSM), which was newly developed and adopted as an alternative to the effective width method for the design of cold-formed steel sections recently by NAS (AISI, 2004), was calibrated by using the test results for application to welded steel sections. This paper confirms that the Direct Strength Method can properly predict the ultimate strength of welded section columns when local buckling and flexural buckling occur simultaneously or nearly simultaneously.  相似文献   

6.
S. C. W. Lau  G. J. Hancock 《Thin》1989,7(3-4):213-238
A method of inelastic buckling analysis of thin-walled structural members and plates is described. The method is based on the spline finite strip method of structural analysis. The analysis takes into account the non-linear material stress-strain properties, strain hardening and residual stresses. The plastic theories used in the study are the flow theory of plasticity and the deformation theory of plasticity. The method of inelastic buckling analysis is applied to a variety of instability problems including plates, cold-formed columns, hot-rolled columns and welded tee section beams. The buckling modes and loads computed are compared with theoretical values and test results.  相似文献   

7.
In this paper, a generalised complex finite strip method is proposed for buckling analysis of thin-walled cold-formed steel structures. The main advantage of this method over the ordinary finite strip method is that it can handle the shear effects due to the use of complex functions. In addition, distortional buckling as well as all other buckling modes of cold-formed steel sections like local and global modes can be investigated by the suggested complex finite strip method. A combination of general loading including bending, compression, shear and transverse compression forces is considered in the analytical model. For validation purposes, the results are compared with those obtained by the Generalized Beam Theory analysis. In order to illustrate the capabilities of complex finite strip method in modelling the buckling behavior of cold-formed steel structures, a number of case studies with different applications are presented. The studies are on both stiffened and unstiffened cold-formed steel members.  相似文献   

8.
为了研究腹板开孔复杂卷边冷弯槽钢梁的局部屈曲性能,以及探究北美冷弯型钢结构设计规范(AISI S100-2016)中腹板开孔冷弯槽钢梁局部屈曲直接强度法计算公式的可靠性,对孔高比(孔洞高度与腹板高度的比值)分别为0、0.2、0.4、0.6和0.8的10个腹板开矩形孔复杂卷边冷弯槽钢梁纯弯试件进行了静力试验研究。试验结果表明,开孔和不开孔试件均发生以局部屈曲为主的屈曲破坏模式,与不开孔试件相比,开孔试件的受弯承载力下降,且下降幅度随孔高比的增大而增大。利用ANSYS有限元程序对试验进行了模拟分析,分析结果与试验结果吻合良好;在此基础上,采用经试验验证的有限元模型,通过变换腹板高度、板厚和孔高比开展了有限元参数分析,并根据有限元参数分析结果对已有腹板开孔冷弯槽钢梁的弹性局部屈曲临界应力近似计算公式进行了修正。基于试验结果、有限元参数分析结果以及修正的弹性局部屈曲临界应力近似计算公式,对AISI S100-2016中开孔冷弯槽钢梁发生以局部屈曲为主破坏时的直接强度法计算公式进行了修正。  相似文献   

9.
A large deflection elastic—plastic analysis has been developed using the finite strip method of structural analysis to determine the non-linear local buckling behaviour of thin-walled and cold-formed sections in compression. The analysis accounts for plate geometric imperfections, the variation of yield stress around a section, the stress—strain characteristics of the material forming the section and complex patterns of residual stress produced by the cold-forming process.

The analysis is verified against reliable solutions for the non-linear buckling behaviour of plates and plate assemblies in axial compression and the non-linear overall buckling behaviour of a strut. The analysis is further compared with the results of plates with a rounded stress—strain curve typical of cold-formed steel and aluminium.  相似文献   


10.
Ben Young  Ehab Ellobody 《Thin》2007,45(3):330-338
Cold-formed steel unequal angles are non-symmetric sections. The design procedure of non-symmetric sections subjected to axial compression load could be quite difficult. The unequal angle columns may fail by different buckling modes, such as local, flexural and flexural–torsional buckling as well as interaction of these buckling modes. The purpose of this study is to investigate the behaviour and design of cold-formed steel unequal angle columns. A nonlinear finite element analysis was conducted to investigate the strength and behaviour of unequal angle columns. The measured initial local and overall geometric imperfections as well as the material properties of the angle specimens were included in the finite element model. The finite element analysis was performed on fixed-ended columns for different lengths ranged from stub to long columns. It is demonstrated that the finite element model closely predicted the experimental ultimate loads and the behaviour of cold-formed steel unequal angle columns. Hence, the model was used for an extensive parametric study of cross-section geometries. The column strengths obtained from the parametric study were compared with the design strengths calculated using the North American Specification for cold-formed steel structural members. It is shown that the current design rules are generally unconservative for short and intermediate column lengths for the unequal angles. Therefore, design rules of cold-formed steel unequal angle columns are proposed.  相似文献   

11.
The paper describes a technique for determining the overall flexural and flexural–torsional bifurcation loads of locally buckled cold-formed channel columns. The method of analysis uses an inelastic geometric non-linear finite strip local buckling analysis to determine the flexural and torsional tangent rigidities of a locally buckled section. These tangent rigidities are substituted into the flexural and flexural–torsional bifurcation equations to calculate the inelastic overall buckling loads. The members are assumed to be geometrically perfect in the overall sense but can include geometric imperfections and yielding in the local mode. The bifurcation analysis is applied to cold-formed plain channel columns. The bifurcation loads and failure modes are compared with tests of fixed-ended columns and shown to be in good agreement with the tests. The effect of yielding is highlighted in the paper.  相似文献   

12.
A nonlinear finite strip method of analysis is described for the post-local buckling of geometrically imperfect plate assemblies. The method is used to provide an accurate alternative to the Winter effective width formula for obtaining the effective section of a simply supported I-beam in the post-local buckling range of structural response. The effective section of a locally buckled beam with thin flange outstands is used to investigate the resistance of the beam to flexural-torsional buckling. The analytical methods developed to assess the nonlinear interaction of local and lateral buckling are compared with experimental tests performed by Cherry.  相似文献   

13.
Thin-walled channel sections may buckle in a distortional mode when subjected to compression. A variety of cold-formed channel columns were tested recently to study distortional buckling in the inelastic range. This paper describes a comparison of a theoretical method for predicting the inelastic distortional buckling strengths of thin-walled columns with the column tests. The method is based on a spline finite strip buckling analysis which takes into account the non-linear stress-strain behaviour of the steel making up the test sections, and the fix-ended test conditions. The inelastic buckling analysis is found to produce accurate estimates of the test failure loads and failure modes  相似文献   

14.
A series of stub column tests on complex sections with intermediate stiffeners is presented in this paper. Initial geometric imperfections and material properties of the test specimens were measured. It is shown that the intermediate stiffeners could effectively enhance the local buckling stress of thin-walled sections. The test strengths are compared with the design strengths calculated using the direct strength method in the North American Specification and Australian/New Zealand Standard for cold-formed steel structures. It is shown that the direct strength method using finite strip method to obtain the buckling stresses is very conservative. Therefore, finite element method was used to predict the elastic buckling stresses. It is shown that the design strengths calculated using direct strength method based on the buckling stresses obtained from finite element analysis results generally agree with the test results well.  相似文献   

15.
《钢结构》2012,(4):81-82
对椭圆环形截面钢柱进行数值模拟和设计。建立准确的有限元模型,模拟两端固接的椭圆环形钢柱。对拉伸试验得出的材料非线性及初始局部(整体)几何缺陷都进行了考虑,通过收敛性研究,以获得最佳的单元网格尺寸。采用此数值模型,对100根柱试件进行参数化研究。对材料屈服、局部屈曲、弯曲屈曲及局部屈曲与弯曲屈曲同时发生的破坏模型进行了分析。将柱的承载力试验值和数值分析结果与基于北美规范、澳大利亚规范、新西兰规范和欧洲规范的计算值进行对比。另外,还采用了不适用于椭圆环形截面钢杆的直接强度法进行分析。对这些设计方法均进行了可靠度分析。  相似文献   

16.
This paper describes a series of compression tests conducted on cold-formed simple lipped channels and lipped channels with intermediate stiffeners in the flanges and web fabricated from high strength steel plate of thickness 0.6 and 0.8 mm with the nominal yield stress 560 MPa. A range of lengths of lipped channel sections were tested to failure with both ends of the column fixed with a special capping to prevent local failure of column ends and influence from the shift of centroid during testing. The high strength cold-formed steel channel sections of intermediate lengths generally displayed a significant interaction between local and distortional buckling. A noticeable interaction between local and overall buckling was also observed for the long columns. A significant post-buckling strength reserve was shown for those sections that showed interaction between local and distortional or overall buckling. Simple design strength formulas in the Direct Strength Method for the thin-walled cold-formed steel sections failing in the mixed mode of local and distortional buckling have been studied. The strengths predicted by the strength formulas proposed are compared with the test results for verification.  相似文献   

17.
This paper presents the numerical simulation and design of cold-formed steel oval hollow section columns. An accurate finite element model was developed to simulate the fixed-ended column tests of oval hollow sections. The material non-linearities obtained from tensile coupon tests as well as the initial local and overall geometric imperfections were incorporated in the finite element model. Convergence study was performed to obtain the optimized mesh size. A parametric study consisted of 100 columns was conducted using the verified numerical model. The failure modes of material yielding, local buckling and flexural buckling as well as interaction of local and flexural buckling were found in this study. The experimental column strengths and numerical results predicted by the parametric study were compared with the design strengths calculated using the current North American, Australian/New Zealand and European specifications for cold-formed steel structures. In addition, the direct strength method, which was developed for cold-formed steel members for certain cross-sections but not cover oval hollow sections, was used in this study. The reliability of these design rules was evaluated using reliability analysis.  相似文献   

18.
B.W. Schafer  Z. Li  C.D. Moen 《Thin》2010,48(10-11):752-762
The objective of this paper is to provide an overview of computational modeling, both elastic buckling and nonlinear collapse analysis, for cold-formed steel members. Recent research and experiences with computational modeling of cold-formed steel members conducted within the first author's research group at Johns Hopkins University are the focus of the presented work. This admittedly biased view of computational modeling focuses primarily on the use of the semi-analytical finite strip method and collapse modeling using shell finite elements. Issues addressed include how to fully compare finite strip and finite element solutions, and the importance of imperfections, residual stresses, material modeling, boundary conditions, element choice, element discretization, and solution controls in collapse modeling of cold-formed steel. Examples are provided to demonstrate the expected range of sensitivity in cold-formed steel collapse modeling. The paper concludes with a discussion of areas worthy of future study that are within the domain of cold-formed steel modeling.  相似文献   

19.
采用有限条软件CUFSM对不同截面几何参数的冷弯薄壁卷边槽钢绕弱轴纯弯进行畸变屈曲应力计算,并根据经典板件屈曲应力公式计算构件翼缘畸变屈曲系数,分析构件截面几何参数的变化对畸变屈曲系数的影响,在此基础上,提出适用于求解直卷边槽钢绕弱轴纯弯畸变屈曲应力的简化公式。与有限条法和基于广义梁理论的横向弯曲铰支计算模型的计算公式进行对比,所提出的公式具有较高精度,且简单实用、便于手算,建议公式可供工程设计和修订规范参考。  相似文献   

20.
为了研究冷弯薄壁卷边槽钢轴心受压构件的极限承载力,对15根轴心受压的冷弯薄壁卷边槽钢进行了破坏性试验,并采用有限元分析方法对试件进行模拟分析,有限元计算结果与试验结果吻合良好,验证了有限元方法的有效性,然后对典型截面构件进行大量的有限元参数分析。研究结果表明:冷弯薄壁卷边槽钢轴心受压构件的极限承载力随着构件翼缘宽厚比、腹板高厚比、长细比以及钢材强度的增大而减小。通过参数分析得到了考虑局部屈曲、整体屈曲和畸变屈曲影响的构件屈服强度折减系数,提出了冷弯薄壁卷边槽钢轴心受压构件承载力计算的折减强度法及其相应计算公式,且通过试验验证了本文折减强度法计算卷边槽钢轴心受压构件极限承载力的适用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号