首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Transient fluxes of intracellular ionized calcium (Ca2+) from intracellular stores are integral components of regulatory signaling pathways operating in numerous biological regulations, including in early stages of egg fertilization. Therefore, we explored whether NADP, which is rapidly generated by phosphorylation of NAD upon fertilization may, directly or indirectly, exert a regulatory role as a trigger of Ca2+ release from intracellular stores in sea urchin eggs. NADP had no effect, but we found that the deamidated derivative of NADP, nicotinate adenine dinucleotide phosphate (beta-NAADP), is a potent and specific stimulus (ED50 16 nM) for Ca2+ release in sea urchin egg homogenates. NAADP triggers the Ca2+ release via a mechanism which is distinct from the well-known Ca2+ release systems triggered either by inositol-1,4,5-triphosphate (IP3) or by cyclic adenosine diphospho-ribose (cADPR). The NAADP-induced release of Ca2+ is not blocked by heparin, an antagonist of IP3, or by procaine or ruthenium red, antagonists of cADPR. However, it is selectively blocked by thionicotinamide-NADP which does not inhibit the actions of IP3 or cADPR. NAADP produced by heating of NADP in alkaline (pH = 12) medium or synthetized enzymatically by nicotinic acid-NADP reaction catalyzed by NAD glycohydrolase have identical properties. The results presented herein thus describe a novel endocellular Ca(2+)-releasing system controlled by NAADP as a specific stimulus. The NAADP-controlled Ca2+ release system may be an integral component of multiple intracellular regulations occurring in fertilized sea urchin eggs, which are mediated by intracellular Ca2+ release, and may also have similar role(s) in other tissues.  相似文献   

2.
Cyclic adenosine diphosphate ribose (cADPR) is a potent endogenous calcium-mobilizing agent synthesized from beta-NAD+ by ADP-ribosyl cyclases in sea urchin eggs and in several mammalian cells (Galione, A., and White, A. (1994) Trends Cell Biol. 4, 431 436). Pharmacological studies suggest that cADPR is an endogenous modulator of Ca2+-induced Ca2+ release mediated by ryanodine-sensitive Ca2+ release channels. An unresolved question is whether cADPR can act as a Ca2+-mobilizing intracellular messenger. We show that exogenous application of nitric oxide (NO) mobilizes Ca2+ from intracellular stores in intact sea urchin eggs and that it releases Ca2+ and elevates cADPR levels in egg homogenates. 8-Amino-cADPR, a selective competitive antagonist of cADPR-mediated Ca2+ release, and nicotinamide, an inhibitor of ADP-ribosyl cyclase, inhibit the Ca2+-mobilizing actions of NO, while, heparin, a competitive antagonist of the inositol 1,4,5-trisphosphate receptor, did not affect NO-induced Ca2+ release. Since the Ca2+-mobilizing effects of NO can be mimicked by cGMP, are inhibited by the cGMP-dependent-protein kinase inhibitor, Rp-8-pCPT-cGMPS, and in egg homogenates show a requirement for the guanylyl cyclase substrate, GTP, we suggest a novel action of NO in mobilizing intracellular calcium from microsomal stores via a signaling pathway involving cGMP and cADPR. These results suggest that cADPR has the capacity to act as a Ca2+-mobilizing intracellular messenger.  相似文献   

3.
BACKGROUND: Cyclic ADP-ribose (cADPR) has been shown to act as a potent cytosolic mediator in a variety of tissues, regulating the release of Ca2+ from intracellular stores by a mechanism that involves ryanodine receptors. There is controversy over the effects of cADPR in cardiac muscle, although one possibility is that endogenous cADPR increases the Ca2+ sensitivity of Ca2+-induced Ca2+ release (CICR) from the sarcoplasmic reticulum. We investigated this possibility using 8-amino-cADPR, which has been found to antagonize the Ca2+-releasing effects of cADPR on sea urchin egg microsomes and in mammalian cells (Purkinje neurons, Jurkat T cells, smooth muscle and PC12 cells). RESULTS: In intact cardiac myocytes isolated from guinea-pig ventricle, cytosolic injection of 8-amino-cADPR substantially reduced contractions and Ca2+ transients accompanying action potentials (stimulated at 1Hertz). These reductions were not seen with injection of HEPES buffer, with heat-inactivated 8-amino-cADPR, or in cells pretreated with ryanodine (2 microM) to suppress sarcoplasmic reticulum function before injection of the 8-amino-cADPR. L-type Ca2+ currents and the extent of Ca2+ loading of the sarcoplasmic reticulum were not reduced by 8-amino-cADPR. CONCLUSIONS: These observations are consistent with the hypothesis that endogenous cADPR plays an important role during normal contraction of cardiac myocytes. One possibility is that cADPR sensitizes the CICR mechanism to Ca2+, an action antagonized by 8-amino-cADPR (leading to reduced Ca2+ transients and contractions). A direct effect of 8-amino-cADPR on CICR cannot be excluded, but observations with caffeine are not consistent with a non-selective block of release channels.  相似文献   

4.
The ryanodine receptor Ca2+ channel (RyRC) constitutes the Ca2+-release pathway in sarcoplasmic reticulum (SR) of cardiac muscle. A direct mechanical and a Ca2+-triggered mechanism (Ca2+-induced Ca2+ release) have been proposed to explain the in situ activation of Ca2+ release in cardiac muscle. A variety of chemical oxidants have been shown to activate RyRC; however, the role of modification induced by oxygen-derived free radicals in pathological states of the muscle remains to be elucidated. It has been hypothesized that oxygen-derived free radicals initiate Ca2+-mediated functional changes in or damage to cardiac muscle by acting on the SR and promoting an increase in Ca2+ release. We confirmed that superoxide anion radical (O2-) generated from hypoxanthine-xanthine oxidase reaction decreases calmodulin content and increases 45Ca2+ efflux from the heavy fraction of canine cardiac SR vesicles; hypoxanthine-xanthine oxidase also decreases Ca2+ free within the intravesicular space of the SR with no effect on Ca2+-ATPase activity. Current fluctuations through single Ca2+-release channels have been monitored after incorporation into planar phospholipid bilayers. We demonstrate that activation of the channel by O2- is dependent of the presence of calmodulin and identified calmodulin as a functional mediator of O2--triggered Ca2+ release through the RyRC. For the first time, we show that O2- stimulates Ca2+ release from heavy SR vesicles and suggest the importance of accessory proteins such as calmodulin in modulating the effect of O2-. The decreased calmodulin content induced by oxygen-derived free radicals, especially O2-, is a likely mechanism of accumulation of cytosolic Ca2+ (due to increased Ca2+ release from SR) after reperfusion of the ischemic heart.  相似文献   

5.
The pharmacology of the cyclic ADP-ribose (cADPR)-dependent Ca2+ release mechanism is very similar to that of the ryanodine receptor (RyR). Here we showed that MgCl2, a known inhibitor of RyR, blocked cADPR-induced Ca+2 release in sea urchin egg homogenates with a half maximal concentration of about 2.5 mM. The effect was specific since up to 10 mM Mg+2 had no effect on the Ca+2 release induced by inositol trisphosphate. K2ATP, another known modulator of RyR, at up to 10 mM did not affect the half-maximal concentration of cADPR, which remained at about 96 nM. These results indicate cADPR is a specific Ca+2 release activator and not merely an adenine nucleotide acting on the ATP-site. The inhibitory effects of Mg+2 further demonstrate the similarity between RyR and the cADPR-dependent Ca+2 release system.  相似文献   

6.
Cyclic ADP-ribose (cADPr) has been shown to release intracellular Ca2+ from sea urchin eggs and a variety of vertebrate cell types, although its mechanism of action remains elusive. We employed the caged version of cADPr to study the [Ca2+] transient kinetics in intact sea urchin eggs for insights into how cADPr gates Ca2+ release. Ca2+ release triggered by photolytic production of cADPr was initially slow, with an effective delay of several hundred milliseconds before the onset of a rapid Ca2+ release phase. In contrast, Ca2+ release induced by photolysis of caged inositol 1,4,5-trisphosphate was immediate in onset and roughly an order of magnitude faster. The delay before cADPr-induced Ca2+ release was eliminated when the [Ca2+] was step-elevated coincident with the photoliberation of cADPr and greatly prolonged in the presence of exogenous Ca2+ buffers. Thus, the slow onset of Ca2+ release does not reflect an intrinsically slow rate by which cADPr gates release channels. Rather, a [Ca2+] rise from resting levels is needed to achieve more than minimal cADPr activity. Full release of Ca2+ by cADPr in intact sea urchin eggs requires a positive Ca2+ feedback.  相似文献   

7.
Ca2+ oscillations can be induced in mammalian eggs and somatic cells by microinjection of a cytosolic sperm protein factor. The nature of the sperm factor-induced Ca2+ signaling was investigated by adding sperm protein extracts to homogenates of sea urchin eggs, which contain multiple classes of Ca2+ release mechanisms. We show that the sperm factor mobilizes Ca2+ from non-mitochondrial Ca2+ stores in egg homogenates after a distinct latency. This latency is abolished by preincubation of sperm extracts with egg cytosol. The preincubation step is highly temperature-dependent and generates a high molecular weight, protein-based Ca2+-releasing agent that can also mobilize Ca2+ from purified egg microsomes. This Ca2+ release appears to be mediated via both inositol 1,4,5-trisphosphate and ryanodine receptors, since homologous desensitization of these two release mechanisms by their respective agonists inhibits further release by the sperm factor. However, sperm factor-induced Ca2+ release by these channels is independent of inositol 1,4, 5-trisphosphate or cADPR since antagonists of either of these two messengers did not block the Ca2+ release effected by the sperm factor. The sperm protein factor may cause Ca2+ release via an enzymatic step that generates a protein-based Ca2+-releasing agent.  相似文献   

8.
At fertilization, sea urchin eggs undergo a series of activation events, including a Ca2+ action potential, Ca2+ release from the endoplasmic reticulum, an increase in intracellular pH, sperm pronuclear formation, MAP kinase dephosphorylation, and DNA synthesis. To examine which of these events might be initiated by activation of phospholipase Cgamma (PLCgamma), which produces the second messengers inositol trisphosphate (IP3) and diacylglycerol, we used recombinant SH2 domains of PLCgamma as specific inhibitors. Sea urchin eggs were co-injected with a GST fusion protein composed of the two tandem SH2 domains of bovine PLCgamma and (1) Ca2+ green dextran to monitor intracellular free Ca2+, (2) BCECF dextran to monitor intracellular pH, (3) Oregon Green dUTP to monitor DNA synthesis, or (4) fluorescein 70-kDa dextran to monitor nuclear envelope formation. Microinjection of the tandem SH2 domains of PLCgamma produced a concentration-dependent inhibition of Ca2+ release and also inhibited cortical granule exocytosis, cytoplasmic alkalinization, MAP kinase dephosphorylation, DNA synthesis, and cleavage after fertilization. However, the Ca2+ action potential, sperm entry, and sperm pronuclear formation were not prevented by injection of the PLCgammaSH2 domain protein. Microinjection of a control protein, the tandem SH2 domains of the phosphatase SHP2, had no effect on Ca2+ release, cortical granule exocytosis, DNA synthesis, or cleavage. Specificity of the inhibitory action of the PLCgammaSH2 domains was further indicated by the finding that microinjection of PLCgammaSH2 domains that had been point mutated at a critical arginine did not inhibit Ca release at fertilization. Additionally, Ca2+ release in response to microinjection of IP3, cholera toxin, cADP ribose, or cGMP was not inhibited by the PLCgammaSH2 fusion protein. These results indicate that PLCgamma plays a key role in several fertilization events in sea urchin eggs, including Ca2+ release and DNA synthesis, but that the action potential, sperm entry, and male pronuclear formation can occur in the absence of PLCgamma activation or Ca2+ increase.  相似文献   

9.
Signal transduction in gastric and intestinal smooth muscle is mediated by receptors coupled via distinct G proteins to various effector enzymes, including PI-specific PLC-beta 1 and PLC-beta 3, and phosphatidylcholine (PC)-specific PLC, PLD and PLA2. Activation of these enzymes is different in circular and longitudinal muscle cells, generating Ca(2+)-mobilizing (IP3, AA, cADPR) and other (DAG) messengers responsible for the initial and sustained phases of contraction, respectively. IP3-dependent Ca2+ release occurs only in circular muscle. Ca2+ mobilization in longitudinal muscle involves a cascade initiated by agonist-induced transient activation of PLA2 and formation of AA, AA-dependent depolarization of the plasma membrane and opening of voltage-sensitive Ca2+ channels. The influx of Ca2+ induces Ca2+ release by activating sarcoplasmic ryanodine receptor/Ca2+ channel and stimulates cADPR formation which enhances Ca(2+)-induced Ca2+ release. The initial [Ca2+]i transient in both muscle cell types results in Ca2+/calmodulin-dependent activation of MLC kinase, phosphorylation of MLC20 and interaction of actin and myosin. The sustained phase is mediated by a Ca(2+)-independent isoform of PKC, PKC-epsilon DAG for this process is generated by PLC- and PLD-mediated hydrolysis of PC. Relaxation is mediated by cAMP-and/or cGMP-dependent protein kinase which inhibit the initial [Ca2+]i transient and reduce the sensitivity of MLC kinase to [Ca2+]i. Relaxation induced by the main neurotransmitters, VIP and PACAP, involves two cascades, one of which reflects activation of adenylyl cyclase. A distinct cascade involves G-protein-dependent stimulation of Ca2+ influx leading to Ca2+/calmodulin-dependent activation of a constitutive eNOS in muscle cells; the generation of NO activates soluble guanylyl cyclase. The resultant activation of PKA and PKG is jointly responsible for muscle relaxation.  相似文献   

10.
CD38, a lymphocyte differentiation antigen, is also a bifunctional enzyme catalyzing the synthesis of cyclic ADP-ribose (cADPR) from NAD+ and its hydrolysis to ADP-ribose (ADPR). An additional enzymatic activity of CD38 shared by monofunctional ADP-ribosyl cyclase from Aplysia californica is the exchange of the base group of NAD+ (nicotinamide) with various nucleophiles. Both human CD38 (either recombinant or purified from erythrocyte membranes) and Aplysia cyclase were found to catalyze the exchange of ADPR with the nicotinamide group of NAD+ leading to the formation of a dimeric ADPR ((ADPR)2). The dimeric structure of the enzymatic product, which was generated by recombinant CD38 and by CD38(+) Namalwa cells from as low as 10 microM NAD+, was demonstrated using specific enzyme treatments (dinucleotide pyrophosphatase and 5'-nucleotidase) and mass spectrometry analyses of the resulting products. The linkage between the two ADPR units of (ADPR)2 was identified as that between the N1 of the adenine nucleus of one ADPR unit and the anomeric carbon of the terminal ribose of the second ADPR molecule by enzymatic analyses and by comparison with patterns of cADPR cleavage with Me2SO:tert-butoxide. Although (ADPR)2 itself did not release Ca2+ from sea urchin egg microsomal vesicles, it specifically potentiated the Ca2+-releasing activity of subthreshold concentrations of cADPR. Therefore, (ADPR)2 is a new product of CD38 that amplifies the Ca2+-mobilizing activity of cADPR.  相似文献   

11.
Our understanding of the signalling mechanisms involved in the process of stomatal closure is reviewed. Work has concentrated on the mechanisms by which abscisic acid (ABA) induces changes in specific ion channels at both the plasmalemma and the tonoplast, leading to efflux of both K+ and anions at both membranes, requiring four essential changes. For each we need to identify the specific channels concerned, and the detailed signalling chains by which each is linked through signalling intermediates to ABA. There are two global changes that are identified following ABA treatment: an increase in cytoplasmic pH and an increase in cytoplasmic Ca2+, although stomata can close without any measurable global increase in cytoplasmic Ca2+. There is also evidence for the importance of several protein phosphatases and protein kinases in the regulation of channel activity. At the plasmalemma, loss of K+ requires depolarization of the membrane potential into the range at which the outward K+ channel is open. ABA-induced activation of a non-specific cation channel, permeable to Ca2+, may contribute to the necessary depolarization, together with ABA-induced activation of S-type anion channels in the plasmalemma, which are then responsible for the necessary anion efflux. The anion channels are activated by Ca2+ and by phosphorylation, but the precise mechanism of their activation by ABA is not yet clear. ABA also up-regulates the outward K+ current at any given membrane potential; this activation is Ca(2+)-independent and is attributed to the increase in cytoplasmic pH, perhaps through the marked pH-sensitivity of protein phosphatase type 2C. Our understanding of mechanisms at the tonoplast is much less complete. A total of two channels, both Ca(2+)-activated, have been identified which are capable of K+ efflux; these are the voltage-independent VK channel specific to K+, and the slow vacuolar (SV) channel which opens only at non-physiological tonoplast potentials (cytoplasm positive). The SV channel is permeable to K+ and Ca2+, and although it has been argued that it could be responsible for Ca(2+)-induced Ca2+ release, it now seems likely that it opens only under conditions where Ca2+ will flow from cytoplasm to vacuole. Although tracer measurements show unequivocally that ABA does activate efflux of Cl- from vacuole to cytoplasm, no vacuolar anion channel has yet been identified. There is clear evidence that ABA activates release of Ca2+ from internal stores, but the source and trigger for ABA-induced increase in cytoplasmic Ca2+ are uncertain. The tonoplast and another membrane, probably ER, have IP3-sensitive Ca2+ release channels, and the tonoplast has also cADPR-activated Ca2+ channels. Their relative contributions to ABA-induced release of Ca2+ from internal stores remain to be established. There is some evidence for activation of phospholipase C by ABA, by an unknown mechanism; plant phospholipase C may be activated by Ca2+ rather than by the G-proteins used in many animal cell signalling systems. A further ABA-induced channel modulation is the inhibition of the inward K+ channel, which is not essential for closing but will prevent opening. It is suggested that this is mediated through the Ca(2+)-activated protein phosphatase, calcineurin. The question of Ca(2+)-independent stomatal closure remains controversial. At the plasmalemma the stimulation of K+ efflux is Ca(2+)-independent and, at least in Arabidopsis, activation of anion efflux by ABA may also be Ca(2+)-independent. But there are no indications of Ca(2+)-independent mechanisms for K+ efflux at the tonoplast, and the appropriate anion channel at the tonoplast is still to be found. There is also evidence that ABA interferes with a control system in the guard cell, resetting its set-point to lower contents, suggesting that stretch-activated channels also feature in the regulation of guard cell ion channels, perhaps through interactions with cytoskeletal proteins. (ABSTRACT TRUN  相似文献   

12.
Cyclic ADP-ribose (cADPR) is suggested to be a novel messenger of ryanodine receptors in various cellular systems. However, the regulation of its synthesis in response to cell stimulation and its functional roles are still unclear. We examined the physiological relevance of cADPR to the messenger role in stimulation-secretion coupling in cultured bovine adrenal chromaffin cells. Sensitization of Ca2+-induced Ca2+ release (CICR) and stimulation of catecholamine release by cADPR in permeabilized cells were demonstrated along with the contribution of CICR to intracellular Ca2+ dynamics and secretory response during stimulation of intact chromaffin cells. ADP-ribosyl cyclase was activated in the membrane preparation from chromaffin cells stimulated with acetylcholine (ACh), excess KCl depolarization, and 8-bromo-cyclic-AMP. ACh-induced activation of ADP-ribosyl cyclase was dependent on the influx of Ca2+ into cells and on the activation of cyclic AMP-dependent protein kinase. These and previous findings that ACh activates adenylate cyclase by Ca2+ influx in chromaffin cells suggested that ACh induces activation of ADP-ribosyl cyclase through Ca2+ influx and cyclic AMP-mediated pathways. These results provide evidence that the synthesis of cADPR is regulated by cell stimulation, and the cADPR/CICR pathway forms a significant signal transduction for secretion.  相似文献   

13.
Calsequestrin is the major Ca(2+)-binding protein localized in the terminal cisternae of the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle cells. Calsequestrin has been purified and cloned from both skeletal and cardiac muscle in mammalian, amphibian, and avian species. Two different calsequestrin gene products namely cardiac and fast have been identified. Fast and cardiac calsequestrin isoforms have a highly acidic amino acid composition. The amino acid composition of the cardiac form is very similar to the skeletal form except for the carboxyl terminal region of the protein which possess variable length of acidic residues and two phosphorylation sites. Circular dichroism and NMR studies have shown that calsequestrin increases its alpha-helical content and the intrinsic fluorescence upon binding of Ca2+. Calsequestrin binds Ca2+ with high-capacity and with moderate affinity and it functions as a Ca2+ storage protein in the lumen of the SR. Calsequestrin has been found to be associated with the Ca2+ release channel protein complex of the SR through protein-protein interactions. The human and rabbit fast calsequestrin genes have been cloned. The fast gene is skeletal muscle specific and transcribed at different rates in fast and slow skeletal muscle but not in cardiac muscle. We have recently cloned the rabbit cardiac calsequestrin gene. Heart expresses exclusively the cardiac calsequestrin gene. This gene is also expressed in slow skeletal muscle. No change in calsequestrin mRNA expression has been detected in animal models of cardiac hypertrophy and in failing human heart.  相似文献   

14.
U73122, a phospholipase C inhibitor, dose dependently blocks the cGMP-induced Ca2+ release in sea urchin eggs and homogenates. U73122 inhibition was prevented by cotreatment with dithiothreitol (DTT), but DTT is ineffective when eggs or homogenates were pretreated with U73122. U73122 action is different from the other sulfhydryl reagents, thimerosal and N-ethylmaleimide, which cause Ca2+ release in egg homogenates at high concentration, but at lower concentration have no significant effect on cGMP-induced Ca2+ release. Histone, a reported NAD glycohydrolase (NADase) activator, was found to induce Ca2+ release in egg homogenates via the same pathway as the cGMP response, since histone-induced Ca2+ release is blocked by Rp-8-pCPT-cGMPS, a cGMP-dependent protein kinase (PKG) inhibitor, and nicotinamide, a NADase inhibitor. Histone-induced Ca2+ release is similarly blocked by U73122. The aminosteroid U73122 does not inhibit cADPR-induced Ca2+ release, which is significantly reduced by PKG inhibitors. Furthermore, U73122 has no significant effect on phorbol 12-myristate 13-acetate induced-cytoplasmic alkalinization in intact eggs, which depends on protein kinase C activity. These results suggest that U73122 does not act as a general serine-threonine protein kinase inhibitor, and the aminosteroid inhibition of the cGMP-induced Ca2+ release may interfere with ADP ribosyl cyclase activity.  相似文献   

15.
The skeletal muscle relaxant dantrolene inhibits the release of Ca2+ from the sarcoplasmic reticulum during excitation-contraction coupling and suppresses the uncontrolled Ca2+ release that underlies the skeletal muscle pharmacogenetic disorder malignant hyperthermia; however, the molecular mechanism by which dantrolene selectively affects skeletal muscle Ca2+ regulation remains to be defined. Here we provide evidence of a high-affinity, monophasic inhibition by dantrolene of ryanodine receptor Ca2+ channel function in isolated sarcoplasmic reticulum vesicles prepared from malignant hyperthermia-susceptible and normal pig skeletal muscle. In media simulating resting myoplasm, dantrolene increased the half-time for 45Ca2+ release from both malignant hyperthermia and normal vesicles approximately 3.5-fold and inhibited sarcoplasmic reticulum vesicle [3H]ryanodine binding (Ki approximately 150 nM for both malignant hyperthermia and normal). Inhibition of vesicle [3H]ryanodine binding by dantrolene was associated with a decrease in the extent of activation by both calmodulin and Ca2+. Dantrolene also inhibited [3H]ryanodine binding to purified skeletal muscle ryanodine receptor protein reconstituted into liposomes. In contrast, cardiac sarcoplasmic reticulum vesicle 45Ca2+ release and [3H]ryanodine binding were unaffected by dantrolene. Together, these results demonstrate selective effects of dantrolene on skeletal muscle ryanodine receptors that are consistent with the actions of dantrolene in vivo and suggest a mechanism of action in which dantrolene may act directly at the skeletal muscle ryanodine receptor complex to limit its activation by calmodulin and Ca2+. The potential implications of these results for understanding how dantrolene and malignant hyperthermia mutations may affect the voltage-dependent activation of Ca2+ release in intact skeletal muscle are discussed.  相似文献   

16.
Cyclic ADP-ribose (cADPR), a novel putative messenger of the ryanodine receptor, was examined regarding its ability to mobilize Ca2+ from intracellular Ca2+ stores in isolated cells of parotid and submandibular glands of the dog. cADPR induced a rapid and transient Ca2+ release in the digitonin-permeabilized cells of salivary glands. cADPR-induced Ca2+ release was inhibited by ryanodine receptor antagonists ruthenium red, ryanodine, benzocaine, and imperatoxin inhibitor but not by the inositol 1,4,5-trisphosphate (IP3)-receptor antagonist heparin. Thapsigargin, at a concentration of 3 to 30 microM, inhibited IP3-induced Ca2+ release, while higher concentrations were required to inhibit cADPR-induced Ca2+ release. Cross-potentiation was observed between cADPR and ryanodine or SrCl2, suggesting that cADPR sensitizes the Ca2+-induced Ca2+ release mechanism. Cyclic AMP plays a stimulatory role on cADPR- and IP3-induced Ca2+ release in digitonin-permeabilized cells. Calmodulin also potentiated cADPR-induced Ca2+ release, but inhibited IP3-induced Ca2+ release. Acetylcholine and ryanodine caused the rise in intracellular free Ca2+ concentration ([Ca2+]i) in intact submandibular and parotid cells. Caffeine did not produce any increase in Ca2+ release or [Ca2+]i rise in any preparation. ADP-ribosyl cyclase activity was found in the centrifuged particulate fractions of the salivary glands. These results suggest that cADPR serves as an endogenous modulator of Ca2+ release from Ca2+ pools through a caffeine-insensitive ryanodine receptor channel, which are different from IP3-sensitive pools in canine salivary gland cells. This system is positively regulated by cyclic AMP and calmodulin.  相似文献   

17.
Cyclic ADP-ribose (cADPR) is a Ca(2+)-mobilizing cyclic nucleotide derived from NAD+. Accumulating evidence indicates that it is an endogenous modulator of the Ca(2+)-induced Ca2+ release mechanism in cells. In this study, we show that ADP-ribosyl cyclase catalyzes the cyclization of not only NAD+ but also several of its analogs with various purine bases (guanine, hypoxanthine, or xanthine) substituting for adenine. Unlike cADPR, the resulting cyclic products are fluorescent. Comparisons with various model compounds indicate that only 7-methyl substituted purine nucleosides and nucleotides are fluorescent, and the pH-dependence of their UV spectra is most similar to that of the fluorescent cADPR analogs, indicating that the site of cyclization of these analogs is at the N7-position of the purine ring. This finding is novel since the site of cyclization is at the N1-position for cADPR as determined by X-ray crystallography. That a single enzyme can cyclize a variety of substrates at two different sites has important implications mechanistically, and a model is proposed to account for these novel catalytic properties. Among the analogs synthesized, cyclic GDP-ribose is highly resistant to hydrolysis, while cyclic IDP-ribose can be readily hydrolyzed by CD38, a bifunctional enzyme involved in the metabolism of cADPR. These unique properties of the analogs can be used to develop fluorimetric assays for monitoring separately the cyclization and hydrolytic reactions catalyzed by the metabolic enzymes of cADPR. The convenience of the method in measuring kinetic parameters, pH-dependence, and modulator activity of the metabolic enzymes of cADPR is illustrated.  相似文献   

18.
We investigated a novel molecular mechanism by which polychlorinated biphenyls (PCBs) alter microsomal Ca2+ transport with sarcoplasmic reticulum (SR) membranes isolated from skeletal and cardiac muscles. Aroclors with an intermediate weight percent of chlorine enhance by >6-fold the binding of 1 nM[3H]ryanodine to its conformationally sensitive site on the SR Ca2+ -release channel [i.e., ryanodine receptor (RyR)] with high potency (EC50=1.4 microM), whereas Aroclors with either high or low chlorine composition show little activity. Structure-activity studies with selected pentachlorobiphenyl congeners reveal a stringent structural requirement for chlorine substitution at the ortho-positions, with 2,2',3,5',6-pentachlorobiphenyl having the highest potency toward skeletal and cardiac isoforms of RyR (EC50=330 nM and 2 microM, respectively). In contrast, 3,3',4,4',5-pentachlorobiphenyl does not enhance ryanodine binding, suggesting that noncoplanarity of the biphenyl rings is required for channel activation. However, 2,2',4,6,6'-pentachlorobiphenyl is significantly less active toward RyR, suggesting that some degree of rotation about the biphenyl bond is required. 2,2',3,5',6-Pentachlorobiphenyl induces a dose-dependent release of Ca2+ from actively loaded SR vesicles with a maximum rate of 1.2 micromol mg-1 min-1 (EC50=1 microM), whereas 3,3',4,4',5-pentachlorobiphenyl (< / = microM) does not alter Ca2+ transport. The mechanism of PCB-induced channel activation involves a significant decrease in the inhibitory potency of Ca2+ and Mg2+ (20-fold and 100-fold, respectively). Neither 2,2',3,5',6- nor 3,3',4,4',5-pentachlorobiphenyl (< / = 10 microM) alters the activity of the skeletal isoform of sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase or the cardiac isoform of sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase, and PCB-induced Ca2+ release can be fully blocked by either microM ryanodine or ruthenium red. These results are the first to demonstrate a selective ryanodine receptor-mediated mechanism by which ortho-substituted PCBs alter microsomal Ca2+ transport and may have toxicological relevance.  相似文献   

19.
We investigated the nature and structural requirements for Ca(2+)-dependent inactivation of cardiac L-type Ca2+ channel. Investigation of subunit requirements indicates that the interaction of alpha 1 subunit with ancillary subunits, especially beta subunit, is important for this property. Replacement of the putative cytoplasmic regions of the cardiac alpha 1 subunit with skeletal muscle counterparts eliminates Ca(2+)-dependent inactivation, indicating that the site regulated by Ca2+ resides in the cytoplasmic region of the alpha 1 subunit. Deletion of the carboxy-terminal region of the cardiac alpha 1 subunit does not eliminate this property, suggesting that the modulation by protein kinase A may not be involved in this mechanism. Single amino acid substitution that strongly reduces Ca2+ selectivity of Ca2+ channels also eliminates Ca(2+)-dependent inactivation, suggesting the close link between the ion selectivity and Ca(2+)-dependent inactivation.  相似文献   

20.
Generally most intracellular Ca2+ is stored in the endoplasmic reticulum (ER) and mitochondria. Recently a mitochondrial Ca(2+)-induced Ca2+ release (mCICR) mechanism, unconnected with ryanodine receptors (RyR's), has been shown in tumour cells. The existence of a mitochondrial Ca2+ release mechanism in BAE cells was investigated using saponin-permeabilised BAE cells. When buffered intracellular solution were 'stepped' from 10 nM to 10 microM free Ca2+, the mitochondrial inhibitors CN (2 mM), FCCP (1 microM), and RR (20 microM) significantly reduced total CICR by approximately 25%. The ER Ca(2+)-ATPase inhibitor thapsigargin (100 nM) had no effect. Furthermore, cyclosporin A (200 nM), an inhibitor of the mitochondrial permeability transition pore (PTP), abolished total CICR. Therefore, the novel ryanodine-caffeine insensitive CICR mechanism previously reported in BAE cells involves mitochondrial Ca2 release. It is proposed that in BAE cells, mCICR occurs via the mitochondrial PTP and may be physiologically important in endothelial cell Ca2+ signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号