首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BACKGROUND: Intravascular thrombosis occurs in disorders of diverse pathogeneses, including allograft and xenograft rejection. In this in vitro study, we describe an approach for tethering the specific thrombin inhibitor hirudin to plasma membranes as part of a genetic strategy for regulating intravascular coagulation. METHODS AND RESULTS: An HLA class I leader sequence was fused with hirudin linked to domains 3 and 4 of human CD4 and intracytoplasmic sequence from either CD4 or human P-selectin. The constructs were transfected into mouse fibroblasts, Chinese hamster ovary (CHO)-K1 cells, immortalized porcine endothelial cells (IPECs), and a pituitary secretory cell line (D16/16). Thrombin binding to the hirudin fusion proteins expressed on fibroblasts and CHO-K1 cells could be blocked by an anti-hirudin monoclonal antibody and by pretreatment of thrombin with either the synthetic tripeptide thrombin inhibitor PPACK or native hirudin. Hirudin expression significantly modified the procoagulant phenotype of IPECs in human plasma, leading to prolongation of clotting times. Hirudin-CD4-P-selectin fusion proteins accumulated in adrenocorticotropic hormone-containing granules in D16/16 cells, with no cell surface expression except on activation with phorbol ester, when hirudin relocated to the outer membrane. CONCLUSIONS: Hirudin fusion proteins were expressed on mammalian cells, where they reduced local thrombin levels and inhibited fibrin formation. Regulated expression was achieved on activated cells by use of the cytoplasmic sequence from P-selectin. In vivo, these fusion proteins may prove useful transgenic or gene therapy agents for preventing intravascular thrombosis.  相似文献   

2.
In this report, we describe a strategy for enhancing the immunogenicity of a wide variety of Ags by linking them to IL-2 via an IgG3-IL-2 fusion protein with high affinity for a convenient hapten Ag, dansyl (DNS; N,N-dimethyl-1-aminonaphthalene-5-sulfonyl chloride). This fusion protein, anti-DNS-IgG3-IL-2, combines the functional characteristics of its constituents and has pharmacokinetic properties that are greatly improved over those of IL-2 and a previously described IgG1-IL-2 fusion. The molecule is intact and recoverable from the blood of mice hours after i.p. injection and reaches distant organs throughout the animal. The 7-h in vivo half-life of this molecule is much longer than that of IL-2, addressing a major obstacle in the application of IL-2 to human diseases, including cancer and AIDS. Additionally, the Ab's specificity for the hapten dansyl and the convenient chemistry of dansyl provide a means to link IL-2 to virtually any molecule of interest without the complexities and uncertainties of making IL-2 fusions with each molecule individually. Using hapten-conjugated-BSA (DNS-BSA) as a model Ag we show that the Ab response elicited by anti-DNS-IgG3-IL-2-bound DNS-BSA-Sepharose injected into mice is increased over that of DNS-BSA-Sepharose or anti-DNS-IgG3-bound DNS-BSA-Sepharose. Anti-DNS-IgG3-IL-2 also increased the Ab response to soluble DNS-BSA after a booster injection. This system should be useful in testing the ability of IL-2 to potentiate the immune response to Ag and in screening a large number of potential Ags for use in vaccines. The dramatically improved pharmacokinetics should also overcome one of the major difficulties in applying IL-2 to the treatment of human disease, its short half-life.  相似文献   

3.
The GRAFTER suite of programs provides geometric search and evaluation functions that simplify and automate the process of identifying the best scaffolds for a particular structural motif. Three application of the GRAFTER suite are presented. Potential grafts between lambda repressor and 434 repressor were identified that should change the DNA binding specificity of these repressors. These results are compared with site-directed mutagenesis experiments that have been shown to alter repressor-DNA binding specificity. Next, 26 loops from antibody structures were grouped into families of similar structure. Grafts of antibody loops onto a pre-existing scaffold are an essential component of antibody humanization. Finally, interleukin (IL)-4 was searched as a scaffold that might accept the graft of a five residue epitope from human growth hormone (hGH). The existence of a crystal structure of the hGH-hGH receptor complex, extensive mutagenesis studies of the hGH residues that contribute to the energetics of ligand-receptor interactions and the gross structural homology between hGH and IL-4 make this an appealing computational target. The approach presented here could aid the development of novel enzymes and binding proteins.  相似文献   

4.
The fusion of endoplasmic reticulum (ER) membranes in yeast does not require Sec18p/NSF and Sec17p, two proteins needed for docking of vesicles with their target membrane. Instead, ER membranes require a NSF-related ATPase, Cdc48p. Since both vesicular and organelle fusion events use related ATPases, we investigated whether both fusion events are also SNARE mediated. We present evidence that the fusion of ER membranes requires Ufe1p, a t-SNARE that localizes to the ER, but no known v-SNAREs. We propose that the Ufe1 protein acts in the dual capacity of an organelle membrane fusion-associated SNARE by undergoing direct t-t-SNARE and Cdc48p interactions during organelle membrane fusion as well as a t-SNARE for vesicular traffic.  相似文献   

5.
6.
Methods for detecting residual malignant cells in patients suffering from lymphoid malignancies have neither been sufficiently sensitive nor easy to routinize, hampering a potential prediction of disease outcome. Taking advantage of clone-specific DNA sequences, generated during lymphocyte differentiation and the polymerase chain reaction, some strategies have been developed for several groups. Up to now the most specific and sensitive methodology, which consists of designing leukemia-specific oligonucleotides, requires sequencing of the complementary determining region III-DNA for each particular patient and is too laborious to be applied to each case for routine monitoring in most hospital laboratories. In an attempt to achieve an easy way to detect residual malignant cells in B lymphoproliferative diseases, we have used a new PCR-based approach, named here as PCR-nuclease protection assay, consisting of: (i) amplification of DNA segments corresponding to the complementarity determining region III of the immunoglobulin heavy chain genes from samples at disease diagnosis; (ii) isolation of the disease-specific single-stranded DNA; (iii) labeling of the single-stranded DNA to generate specific probes; (iv) hybridization to amplified DNA from samples corresponding to different disease phases; and (v) digestion with S1-nuclease. Using this approach, we could detect one malignant cell in a background of 10(5) healthy cells. The sensitivity and specificity of this approach compares with those of the above mentioned specific oligonucleotide strategy in detecting residual malignant B cells. Moreover, this strategy is much less tedious and could be used by most hospital laboratories.  相似文献   

7.
Most mitochondrial proteins are nuclear encoded, synthesized on cytosolic ribosomes, and imported into the mitochondria. We have identified and characterized a 309 amino acid human protein with a molecular weight of 34 kDa that functions as a subunit of the translocase for the import of such proteins. hTom34 (34-kDa Translocase of the Outer Mitochondrial Membrane) is displayed on the surface of mitochondria and is resistant to extraction under alkaline conditions. Antibodies raised against hTom34 specifically inhibit in vitro import of the mitochondrial precursor protein preornithine transcarbamylase into mitochondria isolated from rat liver. Based on trypsin digestion experiments, the receptor has a large (27 kDa) C-terminal domain exposed to the cytosol. This novel component of the protein import machinery possesses a 62 residue motif conserved with the Tom70 family of mitochondrial receptors but otherwise appears to have no counterpart so far characterized in the mitochondria of any other species.  相似文献   

8.
Retroviral vectors were engineered to express either sense (MoTiN-TRPsie+) or sense and antisense (MoTN-TRPsie+/-) RNAs containing the human immunodeficiency virus type-1 (HIV-1) trans -activation response (TAR) element and the extended packaging (Psie) signal. The Psie signal includes the dimer linkage structure (DLS) and the Rev response element (RRE). Amphotropic vector particles were used to transduce a human CD4+ T-lymphoid (MT4) cell line. Stable transductants were then tested for sense and antisense RNA production and susceptibility to HIV-1 infection. HIV-1 production was significantly decreased in cells transduced with MoTiN-TRPsie+ and MoTN-TRPsie+/-vectors. Efficient packaging of sense and most remarkably of antisense RNA was observed within the virus progeny. Infectivity of this virus was significantly decreased in both cases, suggesting that the interfering RNAs were co-packaged with HIV-1 RNA. Vector transduction was not expected to occur and was not observed. Inhibition of HIV-1 replication was also demonstrated in human peripheral blood lymphocytes transduced with retroviral vectors expressing antisense RNA. These results suggest that (i) both sense and antisense RNAs were co-packaged with HIV-1 RNA, (ii) the co-packaged sense and antisense RNAs inhibited virus infectivity and (iii) the co-packaged sense and antisense RNAs were not transduced. Sense and antisense RNA-based strategies may also be used to co-package other interfering RNAs (e.g. ribozymes) to cleave HIV-1 virion RNA.  相似文献   

9.
KAR5 is required for membrane fusion during karyogamy, the process of nuclear fusion during yeast mating. To investigate the molecular mechanism of nuclear fusion, we cloned and characterized the KAR5 gene and its product. KAR5 is a nonessential gene, and deletion mutations produce a bilateral defect in the homotypic fusion of yeast nuclei. KAR5 encodes a novel protein that shares similarity with a protein in Schizosaccharomyces pombe that may play a similar role in nuclear fusion. Kar5p is induced as part of the pheromone response pathway, suggesting that this protein uniquely plays a specific role during mating in nuclear membrane fusion. Kar5p is a membrane protein with its soluble domain entirely contained within the lumen of the endoplasmic reticulum. In pheromone-treated cells, Kar5p was localized to the vicinity of the spindle pole body, the initial site of fusion between haploid nuclei during karyogamy. We propose that Kar5p is required for the completion of nuclear membrane fusion and may play a role in the organization of the membrane fusion complex.  相似文献   

10.
This report shows that African swine fever virus (ASFV)--a large DNA-containing virus--synthesizes a polyprotein to produce several of its structural proteins. By immunoprecipitation analysis, we have found that ASFV polyprotein is a 220 kDa myristoylated polypeptide (pp220) which, after proteolytic processing, gives rise to four major structural proteins: p150, p37, p34 and p14. Processing of the ASFV polyprotein takes place at the consensus sequence Gly-Gly-X and occurs through an ordered cascade of proteolytic cleavages. So far, polyprotein processing as a mechanism of gene expression had been found only in positive-strand RNA viruses and retroviruses. According to the results presented here, ASFV is the first example of a DNA virus that synthesizes a polyprotein as a strategy of gene expression.  相似文献   

11.
A strategy to design potent antagonists of human coagulation factor VIIa (FVIIa) by linking two proteins that independently inhibit activity and bind at separate, nonoverlapping sites is presented. A bifunctional inhibitor (KDTF5), comprising a Kunitz-type domain engineered to inhibit the FVIIa active site and a soluble tissue factor (TF) variant that is defective as a cofactor for factor X (FX) activation, was developed from structure-based modeling of a ternary FVIIa-Kunitz domain-TF complex. KDTF5 inhibited FVIIa-dependent FX activation with a Ki* of 235 +/- 45 pM, a 193-fold and 398-fold increase in potency compared to the TF variant and Kunitz domain individually. Similarly, KDTF5 was a more potent anticoagulant in vitro compared to either inhibitory domain alone. The results demonstrate the harnessing of a macromolecular chelate effect by fusing two inhibitory ligands that bind a target at spatially distinct sites.  相似文献   

12.
13.
Four Rep proteins are encoded by the human parvovirus adeno-associated virus type 2 (AAV). The two largest proteins, Rep68 and Rep78, have been shown in vitro to perform several activities related to AAV DNA replication. The Rep78 and Rep68 proteins are likely to be involved in the targeted integration of the AAV DNA into human chromosome 19, and the full characterization of these proteins is important for exploiting this phenomenon for the use of AAV as a vector for gene therapy. To obtain sufficient quantities for facilitating the characterization of the biochemical properties of the Rep proteins, the AAV rep open reading frame was cloned and expressed in Escherichia coli as a fusion protein with maltose-binding protein (MBP). Recombinant MBP-Rep68 and MBP-Rep78 proteins displayed the following activities reported for wild-type Rep proteins when assayed in vitro: (i) binding to the AAV inverted terminal repeat (ITR), (ii) helicase activity, (iii) site-specific (terminal resolution site) endonuclease activity, (iv) binding to a sequence within the integration locus for AAV DNA on human chromosome 19, and (v) stimulation of radiolabeling of DNA containing the AAV ITR in a cell extract. These five activities have been described for wild-type Rep produced from mammalian cell extracts. Furthermore, we recharacterized the sequence requirements for Rep binding to the ITR and found that only the A and A' regions are necessary, not the hairpin form of the ITR.  相似文献   

14.
15.
Toxic metal pollution of waters and soils is a major environmental problem, and most conventional remediation approaches do not provide acceptable solutions. The use of specially selected and engineered metal-accumulating plants for environmental clean-up is an emerging technology called phytoremediation. Three subsets of this technology are applicable to toxic metal remediation: (1) Phytoextraction--the use of metal-accumulating plants to remove toxic metals from soil; (2) Rhizofiltration--the use of plant roots to remove toxic metals from polluted waters; and (3) Phytostabilization--the use of plants to eliminate the bioavailability of toxic metals in soils. Biological mechanisms of toxic metal uptake, translocation and resistance as well as strategies for improving phytoremediation are also discussed.  相似文献   

16.
17.
The S100 calcium-binding proteins are implicated as effectors in calcium-mediated signal transduction pathways. The three-dimensional structure of the S100 protein calcyclin has been determined in solution in the apo state by NMR spectroscopy and a computational strategy that incorporates a systematic docking protocol. This structure reveals a symmetric homodimeric fold that is unique among calcium-binding proteins. Dimerization is mediated by hydrophobic contacts from several highly conserved residues, which suggests that the dimer fold identified for calcyclin will serve as a structural paradigm for the S100 subfamily of calcium-binding proteins.  相似文献   

18.
One of the most common chromosomal abnormalities in acute leukemia is a reciprocal translocation involving the HRX gene at chromosome locus 11q23, resulting in HRX fusion proteins. Using the yeast two-hybrid system, in vitro binding studies, and human cell culture coimmunoprecipitation experiments, we show here that a region of the HRX protein that is consistently retained in HRX leukemic fusion proteins interacts directly with SET, another protein implicated in leukemia. We have identified the binding sites on HRX for SET and show that these sequences are clustered near the A.T hooks that have been shown to bind DNA. We also show that carboxyl-terminal SET sequences, possibly the acidic tail of SET, bind to HRX. We have also found serine/threonine-specific protein phosphatase activity in anti-HRX coimmunoprecipitates. Using the phosphatase inhibitor okadaic acid and Western blotting, the phosphatase was identified as protein phosphatase 2A (PP2A). Mutation of a single amino acid in one of the SET binding sites of HRX resulted in lower amounts of both coimmunoprecipitated SET protein and coimmunoprecipitated PP2A. These results suggest that the leukemogenic effects of HRX fusion proteins may be related to interactions with SET and PP2A.  相似文献   

19.
Live-attenuated retroviruses have been shown to be effective retroviral vaccines, but currently little is known regarding the mechanisms of protection. In the present studies, we used Friend virus as a model to analyze characteristics of a live-attenuated vaccine in protection against virus-induced disease. Highly susceptible mice were immunized with nonpathogenic Friend murine leukemia helper virus (F-MuLV), which replicates poorly in adult mice. Further attenuation of the vaccine virus was achieved by crossing the Fv-1 genetic resistance barrier. The minimum dose of vaccine virus required to protect 100% of the mice against challenge with pathogenic Friend virus complex was determined to be 10(3) focus-forming units of attenuated virus. Live vaccine virus was necessary for induction of immunity, since inactivated F-MuLV did not induce protection. To determine whether immune cells mediated protection, spleen cells from vaccinated donor mice were adoptively transferred into syngeneic recipients. The results indicated that immune mechanisms rather than viral interference mediated protection.  相似文献   

20.
Recent studies suggest that intracellular membrane traffic relies upon families of related proteins which confer specificity to individual transport reactions but which operate in tandem with a ubiquitous fusogenic complex containing the N-ethylmaleimide-sensitive fusion protein (NSF). The extent to which components of this process are functionally conserved is apparent from the finding that yeast Sec18 protein (Sec18p) can substitute or mammalian NSF in intra-Golgi transport reactions. Here we report that yeast cytosol can support mammalian endosomal vesicle fusion, demonstrating conservation of cytosolic components required for this reaction. Furthermore, under conditions in which the fusion reaction is NSF-dependent we show that yeast Sec18p can functionally substitute for NSF, showing that the yeast protein is capable of catalysing at least two distinct mammalian membrane fusion events. In addition we exploit the complex pattern of sensitivity of the mammalian reaction to N-ethylmaleimide (NEM), coupled with the use of yeast cytosol, to dissect a number of factors required for fusion. We reveal at least three novel NEM-sensitive activities. One of these can be restored by yeast cytosol suggesting that it is functionally conserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号