首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the changes in isolated pulmonary artery (PA) wall tension on switching from control conditions (pH 7.38 +/- 0.01, PCO2 32.9 +/- 0.4 Torr) to isohydric hypercapnia (pH change 0.00 +/- 0.01, PCO2 change 24.9 +/- 1.1 Torr) or normocapnic acidosis (pH change -0.28 +/- 0.01, PCO2 change -0.3 +/- 0.04 Torr) and the role of the endothelium in these responses. In rat PA, submaximally contracted with phenylephrine, isohydric hypercapnia did not cause a significant change in mean (+/- SE) tension [3.0 +/- 1.8% maximal phenylephrine-induced tension (Po)]. Endothelial removal did not alter this response. In aortic preparations, isohydric hypercapnia caused significant (P < 0.01) relaxation (-27.4 +/- 3.2% Po), which was largely endothelium dependent. Normocapnic acidosis caused relaxation of PA (-20.2 +/- 2.6% Po), which was less (P < 0.01) than that observed in aortic preparations (-35.7 +/- 3.4% Po). Endothelial removal left the pulmonary response unchanged while increasing (P < 0.01) the aortic relaxation (-53.1 +/- 4.4% Po). These data show that isohydric hypercapnia does not alter PA tone. Reduction of PA tone in normocapnic acidosis is endothelium independent and substantially less than that of systemic vessels.  相似文献   

2.
The role of carbonic anhydrase (CNA) in the dynamics of carotid body (CB) function was tested by studying the effects of the membrane-permeable CNA inhibitor methazolamide on the chemosensory responses of the cat CB, perfused and superfused in vitro with cell-free and modified Tyrode solution at 36.5 +/- 0.5 degrees C in the presence of CO2-HCO3- (PO2 = 120 Torr, PCO2 = 32 Torr, pH = 7.40). The bulk of CO2 flow to the CB from the external milieu was overwhelmingly large relative to the metabolic production of CO2 in the CB. Accordingly, the relative contribution of the endogenous CO2 to the CB responses was small. The chemosensory nerve discharges were recorded from the whole desheathed carotid sinus nerve. The responses to acidic hypercapnia (PCO2 = 50-60 Torr, pH = 7.20-7.10), hypoxia (PO2 = 25 and 50 Torr), perfusate flow interruption, and bolus injections of sodium cyanide (20-40 nmol) were tested. To contrast, we also measured the effects of nicotine (2-4 nmol), which may act at sites other than those for O2 and CO2. Methazolamide (30 mg/l) in the perfusate at constant PCO2 and pH reduced the baseline activity and delayed the responses to step changes in PCO2 (and concomitantly pH) and PO2 and to cyanide but not to nicotine. The steady-state responses to these stimuli, measured as differences from control, were reduced, but not significantly. The initial overshoots seen with step changes in both high PCO2 and low PO2 were eliminated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The possibility that the carotid body has ATP surface receptors that mediate O2 chemoreception was tested. To distinguish between the event(s) initiating chemoreception and those at the neurotransmitter level, we also tested the chemosensory response to nicotine before and after ATP administration. Carotid bodies from cats anesthetized with pentobarbital sodium were perfused and superfused in vitro with modified Tyrode solution (PCO2 < 1 Torr, pH 7.4, 36 degrees C) equilibrated at PO2 > 400 or approximately 150 Torr while chemosensory discharge was recorded extracellularly. ATP and adenosine 5'-[gamma-thio]triphosphate stimulated discharge with similar dose dependence, whereas adenosine had little effect. ATP infusion for > or = 2 min evoked an initial stimulation of discharge followed by a decline to baseline (desensitization). Desensitization did not affect the response to hypoxia (perfusate flow interruption) but inhibited the response to nicotine (4-nmol pulse). Therefore, 1) the carotid body has surface ATP receptors that may mediate the chemosensory response to nicotine but not to hypoxia and 2) nicotinic receptors are not required for carotid body O2 chemoreception.  相似文献   

4.
In animals with intact peripheral chemosensory afferents, hypoxia differentially affects upper airway (UA) and chest wall muscles. To determine the contribution of brain stem (BS) hypoxia to the response of UA and chest wall muscles during early life, we perfused the BS through a vertebral artery intermittently with blood from an extracorporeal circuit in nine newborn piglets (age 1-5 days). BS perfusions were performed with hypoxemic blood (arterial PO2 32 +/- 6 to 38 +/- 8 Torr) with different levels of BS PCO2 (28 +/- 2, 37 +/- 4, and 56 +/- 5 Torr) while systemic normocapnic hyperoxia was maintained (arterial PCO2 36 +/- 3 to 40 +/- 6 Torr, arterial PO2 345 +/- 73 to 392 +/- 37 Torr). Electromyograms (EMGs) of alae nasi (AN), external intercostal (EI), and diaphragm (DIA) were recorded. Normocapnic hypoxia of the BS induced a sustained increase in AN EMG (P < 0.01, analysis of variance) and depression of EI and DIA EMGs without a transient increase. These contrasting responses were also observed during hypocapnic and hypercapnic hypoxia of the BS and were not affected by inputs from the peripheral chemoreceptors or rostral cerebral structures that were not exposed to hypoxia. We conclude that, despite eliciting the known central respiratory depression, BS hypoxia causes an increase in the respiratory drive to an UA airway muscle. Thus, BS hypoxia elicits a selective rather than a generalized respiratory muscle depression. The respiratory muscles with high energy expenditure (DIA and EI) are depressed while UA muscles are stimulated or disinhibited. This response is independent of the level of BS arterial PCO2.  相似文献   

5.
The relationship between regional parenchymal cerebral blood volume (CBV), regional cerebral blood flow (CBF) and the calculated mean transit time (MTT) was investigated in 14 newborn piglets. The effects of combined hypoxic hypoxia (PaO2 = 32 +/- 5 mm Hg) and hypercapnia (paCO2 = 68 +/- 5 mm Hg) were measured in seven animals. Remaining animals served as the control group. During baseline conditions the highest CBF and CVB values were found in the lower brainstem and cerebellum, whereas white matter exhibited the lowest values (p < 0.05). MTT was prolonged within the cerebral cortex (2.34 +/- 0.42 s-1) compared with the thalamic MTT (1.53 +/- 0.38 s-1) (p < 0.05). Under moderate hypoxia/hypercapnia, a CBF increase to the forebrain (p < 0.05) resulted in an elevated brain oxygen delivery (p < 0.05) and so CMRO2 remained unchanged. Moreover, a moderate increase of CBV and a marked shortening of MTT occurred (p < 0.05). The CBV increase was higher in structures with lowest baseline values, i.e., thalamus (66% increase) and white matter (62% increase) (p < 0.05). MTT was between 22% of baseline in the lower brainstem and 49% in white matter (p < 0.05). We conclude that under normoxic and normocapnic conditions the newborn piglets exhibit a comparatively enlarged intraparenchymal CBV. Moderate hypoxia and hypercapnia induced a marked increase in cerebral blood flow which appears to be caused by an increased perfusion velocity, expressed by a strongly reduced mean transit time and by a concomitant CBV increase.  相似文献   

6.
We measured the effect of high PCO (500-550 Torr) on the pHi and [Ca2+]i in cultured glomus cells of adult rat carotid body (CB) as a test of the two models currently proposed for the mechanism of CB chemoreception. The metabolic model postulates that the rise in glomus cell [Ca2+]i, the initiating reaction in the signalling pathway leading to chemosensory neural discharge, is due to [Ca2+] release from intracellular Ca2+ stores. The membrane potential model postulates that the rise in [Ca2+]i comes from influx of extracellular Ca2+ through voltage-dependent Ca2+ channels (VDCC) of the L-type. High PCO did not change pHi at PO2 of 120-135 Torr, showing that CO-induced changes in [Ca2+]i are not due to changes in pHi. High PCO caused a highly significant rise in [Ca2+]i from 90+/-12 nM to 675+/-65 nM, both in the absence and in the presence of 200 microM CdCl2, a potent blocker of L-type VDCCs. This result is fully consistent with release of Ca2+ from glomus cell intracellular stores according to metabolic model, but inconsistent with influx of extracellular Ca2+ through VDCCs according to the membrane potential model.  相似文献   

7.
The authors have studied chemical control of breathing in 37 normocapnic patients with OSA. These patients had increased apnea-hypopnea index (AHI = 51 +/- 22), obesity (BMI = 32.4 +/- 5.6 kg/m2) and normal lung function tests. Control group consisted of 20 healthy subjects with normal weight (BMI = 23.1 +/- 2.4 kg/m2). Respiratory responses (ventilatory and P0.1) to hypercapnic and hypoxic stimulation during rebreathing tests were measured with computerized methods. The obtained results in OSA patients were compared with the data of the control group. The results exceeding mean values of the control group above 1.64 SD were recognized as hyperreactive responses. The majority e.g. 26 patients (OSA-N) had normal respiratory responses during hypercapnic stimulation. delta V/delta PCO2 = 16.8 +/- 4.5 L/min/kPa, P0.1/delta PCO2 = 3.5 +/- 2.4 cm H2O/kPa/. In remaining 11 patients (OSA-H) respiratory responses were significantly increased delta V/delta PCO2 = 39.1 +/- 18.8 L/min/kPa, P0.1/delta PCO2 = 8.6 +/- 3.9 cm H20/kPa). During isocapnic hypoxic stimulation majority e.g. 25 patients (OSA-H) had significantly increased respiratory responses delta V/delta SaO2 = 3.28 +/- 1.63 L/min/%, delta P0.1/delta SaO2 = 0.54 +/- 0.43 cm H2O/%/. In remaining 12 patients (OSA-N) respiratory responses were within normal limits delta V/SaO2 = 1.2 +/- 0.28 L/min/%, delta P0.1/ delta SaO2 = 0.21 +/- 0.07 cm H2O/%/. The above results indicated, that majority OSA patients (67.5%) had increased ventilatory and P0.1 responses to hypoxic stimulation. Among them also 11 patients had increased respiratory responses to hypercapnia. It seems, that increased respiratory responses to hypoxic stimulus in OSA patients are symptoms of protective reaction to hypoxaemia occurring during repetitive sleep apnoea and reveals increased neuro-muscular output.  相似文献   

8.
Hypoxia activates erythropoietin-producing cells, chemoreceptor cells of the carotid body and pulmonary artery smooth muscle cells (PSMC) with a comparable arterial PO2 threshold of some 70 mmHg. The inhibition by CO of the hypoxic responses in the two former cell types has led to the proposal that a haemoprotein is involved in the detection of the PO2 levels. Here, we report the effect of CO on the hypoxic pulmonary vasoconstriction (HPV). Pulmonary arterial pressure (PAP) was measured in an in situ, blood-perfused lung preparation. PAP in normoxia (20% O2, 5% CO2) was 15.2+/-1.8 mmHg, and hypoxia (2% O2, 5% CO2) produced a DeltaPAP of 6.3+/-0.4 mmHg. Addition of 8% or 15% CO to the hypoxic gas mixture reduced the DeltaPAP by 88.3+/-2.7% and 78.2+/-6.1% respectively. The same levels of CO did not affect normoxic PAP nor reduced the DeltaPAP produced by angiotensin II. The effect of CO was studied after inhibition of the NO-cyclic guanosine monophosphate (cGMP) cascade with N-methyl-l-arginine (5.10(-5) M) or methylene blue (1.4.10(-4) M). It was found that both inhibitors more than doubled the hypoxic DeltaPAP without altering the effectiveness of CO to inhibit the HPV. In in vitro experiments we verified the inhibition of guanylate cyclase by measuring the levels of cGMP in segments of the pulmonary artery. Cyclic GMP levels were 1.4+/-0.2 (normoxia), 2.5+/-0.3 (hypoxia) and 3.3+/-0.5 pmole/mg tissue (hypoxia plus 8% CO); sodium nitroprusside increased normoxic cGMP levels about fourfold. Methylene blue reduced cGMP levels to less than 10% in all cases, and abolished the differences among normoxic, hypoxic and hypoxic plus CO groups. It is concluded that CO inhibits HPV by a NO-cGMP independent mechanism and it is proposed that a haemoprotein could be involved in O2-sensing in PSMC.  相似文献   

9.
This study examined the dynamics of the middle cerebral artery (MCA) blood flow response to hypocapnia in humans (n = 6) by using transcranial Doppler ultrasound. In a control protocol, end-tidal PCO2 (PETCO2) was held near eucapnia (1.5 Torr above resting) for 40 min. In a hypocapnic protocol, PETCO2 was held near eucapnia for 10 min, then at 15 Torr below eucapnia for 20 min, and then near eucapnia for 10 min. During both protocols, subjects hyperventilated throughout and PETCO2 and end-tidal PO2 were controlled by using the dynamic end-tidal forcing technique. Beat-by-beat values were calculated for the intensity-weighted mean velocity (VIWM), signal power (P), and their instantaneous product (P.VIWM). A simple model consisting of a delay, gain terms, time constants (tauf,on, tauf, off) and baseline levels of flow for the on- and off-transients, and a gain term (gs) and time constant (taus) for a second slower component was fitted to the hypocapnic protocol. The cerebral blood flow response to hypocapnia was characterized by a significant (P < 0.001) slow progressive adaptation in P.VIWM, with gs = 1.26 %/Torr and taus = 427 s, that persisted throughout the hypocapnic period. Finally, the responses at the onset and relief of hypocapnia were asymmetric (P < 0.001), with tauf,on (6.8 s) faster than tauf,off (14.3 s).  相似文献   

10.
11.
BACKGROUND: The authors compared the effects of etomidate and desflurane on brain tissue oxygen pressure (PO2), carbon dioxide pressure (PCO2), and pH in patients who had middle cerebral artery occlusion for > 15 min. METHODS: After a craniotomy, a probe that measures PO2, PCO2, and pH was inserted into cortical tissue at risk for ischemia during middle cerebral artery occlusion. A burst suppression pattern of the electroencephalogram was induced with etomidate (n = 6) or 9% end-tidal desflurane (n = 6) started before middle cerebral artery occlusion. Mean blood pressure was supported with phenylephrine to 90-95 mmHg. RESULTS: During baseline conditions, tissue PO2, PCO2, and pH were similar between the two groups (PO2 = 15 mmHg, PCO2 = 60 mmHg, pH = 7.1). During administration of etomidate before middle cerebral artery occlusion, tissue PO2 decreased in five of six patients without a change in PCO2 or pH. During administration of 9% desflurane, tissue PO2 and pH increased before middle cerebral artery clipping. Middle cerebral artery occlusion for an average of 33 min with etomidate and 37 min with desflurane produced a decrease in pH with etomidate (7.09 to 6.63, P < 0.05) but not with desflurane (7.12 to 7.15). CONCLUSION: These results suggest that tissue hypoxia and acidosis are often observed during etomidate treatment and middle cerebral artery occlusion. Treatment with desflurane significantly increases tissue PO2 alone and attenuates acidotic changes to prolonged middle cerebral artery occlusion.  相似文献   

12.
PURPOSE: To evaluate the clinical usefulness of the continuous intra-arterial blood gas (CIABG) monitoring system, Paratrend 7, during differential lung ventilation (DLV) in 12 patients undergoing oesophagectomy. METHODS: Anaesthesia was induced with propofol and was maintained with isoflurane, oxygen and air, supplemented by an epidural infusion of mepivacaine. Arterial samples for estimation of blood gases (ABG) were taken just before and 5, 10, 20, 30, 60, and 90 min after the pleura was opened. The pH, PO2, and PCO2 values displayed by the CIABG monitor, which were recorded prior to the arterial blood sampling, were compared with the results of ABG analysis. RESULTS: Eighty-four blood samples were obtained and the ranges for the measured variables were PCO2 24.8-57.4 mmHg, PO2 47-449 mmHg, and pH 7.30-7.49. The correlation between CIABG and ABG measurements was strong and significant (r values: PCO2 0.80, PO2 0.93, pH 0.94). The overall bias +/- precision between the two methods was PCO2 0.9 +/- 3.1 mmHg, PO2 -1 +/- 40 mmHg, %PO2 0.8 +/- 21.6%, pH 0.00 +/- 0.02. For PO2 values < 150 mmHg, the biases +/- precision were PO2 -5 +/- 17 mmHg, %PO2 -2.1 +/- 20.7%. CONCLUSION: The agreement between CIABG and ABG measurements was better for PCO2 and pH than for PO2. Although the CIABG system is clinically useful for monitoring trends in blood gas changes, the accuracy of the PO2 value may be unacceptable during DLV because the error is theoretically < 34 mmHg with 95% reliability in the clinically important range of PO2, < 150 mmHg.  相似文献   

13.
The effects of different natural stimulants on the afferent unit discharge of rabbit carotid chemoreceptors were studied in the in vitro carotid body- sinus nerve preparation. A total of 32 chemoreceptive units were recorded. The results were as follows: (1) Of the 32 units, 10 (31%) showed chemosensory responses only to PO2 decrease; 9 (28%) to all stimulants (PO2 decrease, PCO2 increase and pH decrease); 9 (28%) to PO2 decrease and PCO2 increase; 3 (9%) to PO2 decrease and pH decrease; only one to pH decrease. (2) The potency of the three natural stimulants in eliciting the changes in intensity of discharge showed a decreasing order as follows: PO2 decrease > PCO2 increase > pH decrease. The above results suggest that the carotid body may contain only one or a combination of 2 or 3 kinds of chemoreceptors respectively sensitive to decrease PO2 to increase PCO2 or decrease pH.  相似文献   

14.
Rapid eye movements during rapid-eye-movement (REM) sleep are associated with rapid, shallow breathing. We wanted to know whether this effect persisted during increased respiratory drive by CO2. In eight healthy subjects, we recorded electroencephalographic, electrooculographic, and electromyographic signals, ventilation, and end-tidal PCO2 during the night. Inspiratory PCO2 was changed to increase end-tidal PCO2 by 3 and 6 Torr. During normocapnia, rapid eye movements were associated with a decrease in total breath time by -0.71 +/- 0.19 (SE) s (P < 0.05) because of shortened expiratory time (-0.52 +/- 0.08 s, P < 0.001) and with a reduced tidal volume (-89 +/- 27 ml, P < 0.05) because of decreased rib cage contribution (-75 +/- 18 ml, P < 0.05). Abdominal (-11 +/- 16 ml, P = 0.52) and minute ventilation (-0.09 +/- 0.21 ml/min, P = 0.66) did not change. In hypercapnia, however, rapid eye movements were associated with a further shortening of total breath time. Abdominal breathing was also inhibited (-79 +/- 23 ml, P < 0.05), leading to a stronger inhibition of tidal volume and minute ventilation (-1.84 +/- 0.54 l/min, P < 0.05). We conclude that REM-associated respiratory changes are even more pronounced during hypercapnia because of additional inhibition of abdominal breathing. This may contribute to the reduction of the hypercapnic ventilatory response during REM sleep.  相似文献   

15.
BACKGROUND: Desflurane anesthesia can produce cerebral metabolic depression and increase cerebral blood flow. We evaluated the effect of desflurane on brain tissue oxygen pressure (PO2), carbon dioxide pressure (PCO2) and pH during neurosurgery. METHODS: Following a craniotomy, the dura was opened and a Paratrend 7 sensor, which measures PO2, PCO2, pH and temperature, was inserted into brain tissue. In 6 control patients in group 1, anesthesia was maintained constant with 3% end-tidal desflurane over 60 min, including a 30-min stabilization period. In group 2, 9 patients were ventilated with 3% desflurane under baseline conditions. After a 30-min stabilization period, baseline tissue gases and pH were measured and end-tidal desflurane was increased to 6% and then 9% for 15-min intervals. Mean arterial pressure (MAP) was maintained with intravenous phenylephrine. RESULTS: Under baseline conditions, cardiovascular and brain tissue measures were similar between the 2 groups. Increasing end-tidal desflurane from 3% to 9% produced burst-suppression EEG in all patients and significantly increased tissue PO2 and pH and decreased PCO2. No parameters changed significantly in the control group during steady-state anesthesia. CONCLUSION: These results show that 9% desflurane can improve brain tissue metabolic status before temporary brain artery occlusion if cerebral perfusion pressure is maintained. This may be particularly important in patients with symptoms of ischemia before surgery.  相似文献   

16.
We have determined the effects of preterm birth on the postnatal development of ventilatory responses to progressive hypoxia and hypercapnia in awake lambs. Hypoxic and hypercapnic rebreathing tests were performed at weekly intervals in 5 preterm (born at 135 +/- 0.5 d) and 5 term (born at 146 +/- 0.2 d) lambs up to 6-7 weeks after birth. Term lambs were also studied at 25 weeks after birth. During rebreathing tests, we measured arterial PO2 and PCO2 and related them to minute ventilation (VI). Owing to variability in resting PAO2, hypoxic sensitivity was defined as the percentage increase in VI when PaO2 fell to 60% of resting values. Hypoxic sensitivities of preterm lambs did not change with age (68.9 +/- 24.4%), whereas values for term lambs more than doubled over the first 6 weeks (day 2, 73.9 +/- 15.8%; week 6, 227.4 +/- 24.9%) but returned to early postnatal values by week 25 (87.0 +/- 21.2%). Hypercapnic sensitivities (ml min-1 kg-1 mmHg CO2(-1) of preterm lambs were lower than those of term lambs between day 2 and week 2, but reached values in term lambs thereafter. We conclude that preterm birth abolishes the normal postnatal maturation of hypoxic ventilatory sensitivity, and temporarily depresses hypercapnic sensitivity.  相似文献   

17.
BACKGROUND: We evaluated brain tissue oxygen pressure (PO2), carbon dioxide pressure (PCO2) and pH during ischemia with brain temperature at 35 degrees and 18 degrees C in the same patient. METHODS: Surgery was performed in a 60-year-old woman to clip a large aneurysm in the left internal carotid artery (ICA). A Paratrend 7 probe measuring PO2, PCO2, and pH was inserted into tissue at risk for ischemia during ICA occlusion and brain protection was provided with 9% desflurane. One week later, hypothermic circulatory arrest with brain temperature at 18 degrees C was performed for aneurysm clipping and tissue measurements were obtained during ischemia and rewarming. RESULTS: At 35 degrees C, ICA occlusion for 16 minutes produced tissue hypoxia (PO2 = 0) and acidosis (pH = 6.70). The rate of increase of hydrogen ion (H+) reached 50 nEq.L(-1).min(-1) during ICA occlusion and there was a slow recovery of acidosis at the end of the ischemic period. During hypothermic circulatory arrest, tissue PO2 was sensitive to decreases in blood pressure and decreased rapidly during exsanguination. Although tissue pH decreased to 6.5 with 30 min of no pump flow, the rate of H+ increase during hypothermic arrest was one-third of that seen during ischemia at 35 degrees C. During rewarming from profound hypothermia, two phases of recovery from acidosis were observed, one during CO2 clearance and one after tissue reoxygenation. Recovery of acidosis occurred sooner at 18 degrees C than at 35 degrees C. CONCLUSIONS: These results show that tissue acidosis develops more slowly and recovers more rapidly with hypothermic ischemia. This may be an important mechanism of reduced ischemic injury during hypothermia.  相似文献   

18.
Arterial PCO2 (PaCO2), determined directly in the radial artery, was compared with indirect estimates of PCO2 in six elderly men (mean age 73.8 yr). Estimates of PaCO2 included arterialized venous PCO2 (PavCO2); end-tidal PCO2; mean alveolar PCO2, calculated by using a reconstruction of the alveolar oscillation in PCO2 and accounting for the presence of dead space (time-weighted mean for PCO2 throughout the respiratory cycle); and values calculated by using the empirical formula developed by Jones et al. (N. L. Jones, D. G. Robertson, and J. W. Kane. J. Appl. Physiol. 47: 954-960, 1979), which incorporates end-tidal PCO2 and tidal volume (PaCO2 derived from end-tidal PCO2 and VT). Measurements were made at rest and during cycle ergometry at 25 and 50 W while the subjects breathed various gas mixtures (euoxic-eucapnic, hypoxic-eucapnic, hyperoxic-eucapnic, and hyperoxic-hypercapnic). The mean differences between the estimates and the actual PaCO2 at rest and in 25- and 50-W exercise were as follows: PavCO2, 0.3 +/- 0.7 (SD), -0.1 +/- 0.7, and 1.8 +/- 1.2 Torr; end-tidal PCO2, 2.9 +/- 1.7, 4.0 +/- 3.1, and 3.7 +/- 3.2 Torr; time-weighted mean of alveolar PCO2, 2.6 +/- 1.9, 3.3 +/- 3.1, and 3.6 +/- 3.8 Torr; and PaCO2 derived from end-tidal PCO2 and VT, 2.4 +/- 1.3, 1.3 +/- 3.0, and 0.6 +/- 2.9 Torr. It is concluded that mean PavCO2 agreed most closely with mean PaCO2 both at rest and in exercise. All methods of deriving PaCO2 using measurements from the respired gases overestimated arterial values at rest. Of the noninvasive techniques, mean estimates calculated using the regression equation developed by Jones et al. corresponded most closely with PaCO2 in exercise.  相似文献   

19.
Isolated rat neonatal cardiac myocytes were subjected to immersion in hypoxic (PO2 < 2 mm Hg), glucose-free Tyrode's solution for 5 h followed by concomitant reoxygenation and staining with the membrane-impermeant fluorophore, propidium iodide, in normoxic (PO2 > 150 mm Hg), serum-free culture media for 15 min in order to assess sarcolemmal damage indicative of myocyte viability due to hypoxia/reoxygenation injury. Prior to hypoxic exposure, cells were pretreated for 90 min with the angiotensin-converting enzyme inhibitor cyclopenta[b]pyrrole-2-carboxylic acid, 1-[2-[(1-carboxy-3-phenylpropyl)amino]-l-oxopropyl]octahydro-[2S-[1[R* (R*)]2 alpha, 3a beta, 6a beta]] (ramiprilat), concomitantly with ramiprilat and H-D-Arg-Arg-Pro-Hyp-Gly-Thi-Ser-D-Tic-Oic-Arg-OH (bradykinin B2 receptor antagonist HOE 140), the bioactive peptide Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg (bradykinin) or concomitantly with bradykinin and HOE 140. Hypoxia/reoxygenation injury to untreated control cardiac myocytes was characterized by a significant loss of sarcolemmal integrity measured at 75 +/- 4% of total cell fluorescence (mean +/- S.E., n = 42 cultures). Compared to propidium iodide staining of the above untreated control myocytes, those pretreated with 30 or 100 microM ramiprilat showed a significant reduction of propidium iodide staining to 45 +/- 9% and 40 +/- 8% (n = 9, P < 0.05) of untreated controls, respectively. Pretreatment with the protective concentrations of ramiprilat concomitant with 10 microM HOE 140 abolished the significant reduction in propidium iodide staining observed with ramiprilat alone. Similarly, pretreatment with 10 or 100 nM bradykinin significantly reduced propidium iodide staining to 35 +/- 5% and 60 +/- 10% (n = 6, P < 0.05) of the untreated hypoxic controls, respectively. In addition, concomitant pretreatment with protective concentrations of bradykinin and 10 microM HOE 140 also abolished the significant reduction in propidium iodide staining observed with bradykinin alone. The results indicate that the angiotensin-converting enzyme inhibitor ramiprilat has a protective effect on isolated cardiac myocytes exposed to hypoxia/reoxygenation and that this effect is most likely related to a local action of bradykinin on the cardiac myocyte via the activation of the kinin B2 receptor.  相似文献   

20.
The intracellular sodium concentration ([Na+]i) and resting potential (Em) of cultured mouse glomus cells (clustered and isolated) were simultaneously measured with intracellular Na+-sensitive and conventional, KCl-filled, microelectrodes. Results obtained in clustered and isolated cells were similar. During normoxia (PO2 122 Torr), [Na+]i was 12-13 mM corresponding to a Na+ equilibrium potential (ENa) of about 58 mV. Em was about -42 mV. Hypoxia, induced by Na2S2O4 1 mM (PO2 10 Torr), depolarized the cells by about 20 mV, [Na+]i increased by 21 mM and ENa dropped to about 35 mV. One millimolar of CoCl2 depressed, or blocked, the effects of Na2S2O4 on [Na+]i but did not affect hypoxic depolarization. Voltage-clamping at -70 mV, while delivering pulses of different amplitudes, produced only small (about 10 pA) and slow TTX-insensitive inward currents. Fast and large (TTX-sensitive) inward currents were not detected. The cell conductance (measured with voltage ramps) was less than 1 nS. It was not affected by hypoxia but was depressed by cobalt. Voltage ramps elicited small inward currents in control and hypoxic solutions that were much smaller than those induced by barium (presumably enhancing calcium currents). Also, normoxic and hypoxic currents had lower thresholds and their troughs were at more negative voltages than in the presence of Ba2+. All currents were blocked by 1 mM CoCl2 suggesting that, at this concentration, cobalt exerted a nonspecific effect on glomus membrane channels. Hypoxia induced a large [Na+]i increase (presumably through inflow), but very small voltage-gated inward currents. Thus, Na+ increases (inflow) probably occurred by disturbing a Na+/K+ exchange mechanism and not by activation of voltage-gated channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号