首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amorphous silica gel modified carbon paste electrode (CPE) offers substantial improvements in voltammetric sensitivity and selectivity towards determination of dopamine (DA). Cyclic voltammetry of Fe(CN)63−/4− as a negatively charged probe revealed that the surface of the silica gel modified carbon paste electrode had a high density of negative charge at pH 8.0. Therefore, the modified electrode adsorbed DA (pKa = 8.9) and enhanced its voltammetric response while repulsed ascorbic acid (AA) (pKa = 4.2) and uric acid (UA) (pKa = 5.4) and inhibited their interfering effects. The influence of various experimental parameters including percent of silica gel in the CPE, pH of solution, and accumulation time and potentials, on the voltammetric response of DA was investigated. At the optimum conditions, the analytical curve was linear for dopamine concentrations from 2.0 × 10−7 to 1.0 × 10−6 mol L−1 and 2.0 × 10−6 to 1.5 × 10−4 mol L−1 with a detection limit (3σ) of 4.8 × 10−8 mol L−1. The prepared electrode was used for determination of DA spiked into DA injection and human serum samples, and very good recovery results were obtained over a wide concentration range of DA.  相似文献   

2.
Highly ordered SBA-15 and Sn-SBA-15 mesoporous molecular sieves with Si/Sn = 80, 60, 40 and 10 have been prepared through direct synthesis route under milder acidic conditions, which were used for the in situ high temperature X-ray diffraction (HTXRD) studies in the temperature range 298–1573 K for the first time in the literature. SBA-15 is found to be thermally stable up to 1473 K and appearance of α-cristobalite was observed at 1573 K also supported by the thermogravimetric (TG) data. A strong negative thermal expansion was observed on heating from 298 to 1573 K (αa = −4.3 × 10−6 K−1). Sn containing samples (Si/Sn = 80 and 60) showed a positive thermal expansion (6.75 × 10−6 K−1 and 9.04 × 10−6 K−1, respectively). On the other hand, the samples with Si/Sn = 40 and 10 showed a strong negative thermal expansion (−4.12 × 10−6 K−1 and −7.56 × 10−6 K−1) similar to SBA-15. The linear thermal expansion coefficient varied in the order: Si/Sn = 60 > 80 > 40 > 0 > 10. Sn4+ ions exhibit both tetrahedral and octahedral coordination depending upon the location of these ions either on the walls of the silica (Si/Sn = 80 and 60) or in the corona region of the structure (Si/Sn = 40 and 10), respectively. The thermal decomposition of the samples (TG data) is correlated to the thermal expansion behavior (HTXRD data). The decomposition behavior of template ions located within the pores is strongly influenced by the presence of Sn in the framework and a ‘soft’ interaction probably exists between the template ions and the Sn sites.  相似文献   

3.
Bimetallic salicylaldimine-nickel complexes, 2,4,6-Me3-1,3-{[NCH–(3′-R-5′-Y-2′-O–C6H3)-κ2-N,O]Ni(Ph) (PPh3)}2 [R = tert-Bu, Y = Me, 1b; R = Ph, Y = H, 2b] were prepared and their catalytic behaviors of ethylene polymerization were investigated. The bimetallic complex 2b shows higher activities (2.9 × 105 g PE mol−1 Ni h−1) for ethylene polymerization and affords polymer with high molecular weight (Mw = 1.41 × 105) and broad molecular weight distribution (Mw/Mn = 6.1) than its mononuclear matrix, {[(2,6-Me2C6H3)–NCH–(3′-Ph-2′-O–C6H3)-κ2-N,O]Ni(Ph)(PPh3)} (3) (Activity = 5.5 × 104 g PE mol−1 Ni h−1; Mw = 1.86 × 104; Mw/Mn = 2.8).  相似文献   

4.
One new metal-organic polymer formulated as [Fe210-btc)0.52-ox)0.52-O)1.5]n 1 (btc = 1,2,4,5-benzenetetracarboxylate, pyramellitate; ox = oxalate) has been synthesized by low-temperature solid-state reaction and characterized by single-crystal X-ray diffraction, elemental analyses, TGA, IR spectra and UV–visible spectra. Complex 1 presents the first 3D coordination network structure constructed by bridging btc, ox and O mixed ligands. In 1, carboxyl groups of btc are all deprotonated and they have a new type of μ10-btc coordination mode. The third-order non-linear optical (NLO) properties of the title compound 1 were also investigated and they exhibit the reverse saturable absorption and self-defocusing performance with modulus of the hyperpolarizability (γ) 5.98 × 10−30 esu for 1 in a 7.45 × 10−4 mol dm−3 DMF solution.  相似文献   

5.
A glucose biosensor, which was based on self-assembled Prussian Blue (PB) modified electrode with glucose oxidase (GOD) immobilized in cross-linked glutaraldehyde matrix, was developed. Fourier-transform infrared spectroscopy shows that the immobilized GOD retains its native conformation. Cyclic voltammetry was used to examine the electrocatalytic property of the enzyme electrode. The prepared glucose biosensor exhibits fast response (<4 s) and low detection limit of 5 × 10−6 M. The calculated apparent Michaelis constant KM was 6.3 ± 1.2 mM, indicating a high affinity between the GOD and glucose. The effects of glutaraldehyde concentration and GOD loading on the sensitivity of the glucose biosensor have also been investigated. Under the optimal conditions, the biosensor shows a high sensitivity of about 80 mA M−1 cm−2 in a concentration range up to 1 × 10−3 M. The relative standard deviation (RSD) for intra-electrode and inter-electrode were 4% and 5%, respectively. In addition, the anti-interferent ability and stability of the biosensor were also discussed.  相似文献   

6.
Several transport parameters (as hydraulic conductivity K, apparent diffusion coefficient Dp and diffusion accessible porosity η of HTO and iodide) have been intensively measured in the laboratory on high-quality cores taken at the Mol-1 borehole of the Mol site, in Belgium. The borehole was cored in 1997 from about 145 to 325 m depth, including the whole thickness of the Boom Formation, a Tertiary clay situated between 186 and 288 m depth (ground level), and part of the surrounding layers.The hydraulic conductivity measurements confirm the low permeability of the Boom Clay. An upper 90-m-thick clay layer within this formation can be considered as homogeneous with respect to the hydraulic conductivity. The vertical hydraulic conductivity Kv (i.e. K perpendicular to the bedding) is in the order of magnitude of 10−12 m s−1 and the average is 2.3×10−12 m s−1. This layer comprises from top to bottom the “Transition Zone”, the Putte Member, the Terhagen Member and the top of the Belsele-Waas Member of the Boom Formation. The 12 m at the base of the Formation, which corresponds to the lower part of the Belsele-Waas Member is characterised by larger Kv values (ranging between 10−11 and 9×10−11 m s−1).The same thick clay layer can also be considered as homogeneous, regarding the values of the apparent diffusion coefficient and the diffusion accessible porosity η of tritiated water (HTO) and iodide. The average value of the diffusion accessible porosity is 0.37±0.03 for HTO and 0.16±0.02 for iodide. The apparent diffusion coefficient varies from 1.1×10−10 to 5.5×10−10 m2 s−1 for HTO and from 9.1×10−11 to 5.2×10−10 m2 s−1 for iodide.  相似文献   

7.
One new metal-organic complex formulated as {[Co(bipy)3][Co22–ox)3]}n 1 (bipy = 2,2′-bipyridyl; ox = oxalate) has been synthesized by low-temperature solid-state reaction and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra and UV–visible spectra. The complex 1 contains helical chains composed of left-handed and right-handed helices interlaced in pairs. The third-order non-linear optical (NLO) properties of the 1 were also investigated and they exhibit the reverse saturable absorption and self-defocusing performance with modulus of the hyperpolarizability (γ) 5.75 × 10−30 esu for 1 in a 2.36 × 10−4 mol dm−3 DMF solution.  相似文献   

8.
A simple procedure was developed to prepare a glassy carbon (GC) electrode modified with nickel oxide (NiOx) nanoparticles and water-soluble dyes. By immersing the GC/NiOx modified electrode into thionine (TH) or celestine blue (CB) solutions for a short period of time (5–120 s), a thin film of the proposed molecules was immobilized onto the electrode surface. The modified electrodes showed stable and a well-defined redox couples at a wide pH range (2–12), with surface confined characteristics. In comparison to usual methods for the immobilization of dye molecules, such as electropolymerization or adsorption on the surface of preanodized electrodes, the electrochemical reversibility and stability of these modified electrodes have been improved. The surface coverage and heterogeneous electron transfer rate constants (ks) of thionin and celestin blue immobilized on a NiOx-GC electrode were approximately 3.5 × 10−10 mol cm−2, 6.12 s−1, 5.9 × 10−10 mol cm−2 and 6.58 s−1, respectively. The results clearly show the high loading ability of the NiOx nanoparticles and great facilitation of the electron transfer between the immobilized TH, CB and NiOx nanoparticles. The modified electrodes show excellent electrocatalytic activity toward hydrogen peroxide reduction at a reduced overpotential. The catalytic rate constants for hydrogen peroxide reduction at GC/NiOx/CB and GC/NiOx/TH were 7.96 (±0.2) × 103 M−1 s−1 and 5.5 (±0.2) × 103 M−1 s−1, respectively. The detection limit, sensitivity and linear concentration range for hydrogen peroxide detection were 1.67 μM, 4.14 nA μM−1 nA μM−1 and 5 μM to 20 mM, and 0.36 μM, 7.62 nA μM−1, and 1 μM to 10 mM for the GC/NiOx/TH and GC/NiOx/CB modified electrodes, respectively. Compared to other modified electrodes, these modified electrodes have many advantages, such as remarkable catalytic activity, good reproducibility, simple preparation procedures and long-term stabilities of signal responses during hydrogen peroxide reduction.  相似文献   

9.
A new metal-organic network (EMIM)[Co2(hip)2(μ3-OH)]·H2O (1), (H2hip = 5-hydroxyisophthalic acid and EMIM = 1-ethly-3-methylimidazolium), has been synthesized by the ionothermal reaction of cobalt nitrate, H2hip and [EMIM]Br ionic liquid. Single-crystal X-ray diffraction analysis reveals that 1 exhibits a two-dimensional (2D) bilayer constructed from tetranuclear [Co4(μ3-OH)2] building units and hip2− linkers. There are square cavities with the dimension of 10.161 × 10.868 Å. The [EMIM]+ cations are located in the cavities, which have the hydrogen bonding interactions with the bilayer. Further more, the strong hydrogen bonds between the carboxylate and hydroxyl oxygen atoms of hip2− ligands and lattice water molecules extend the 2D layer into a 3D supramolecular network. The magnetic properties of 1 have been investigated by variable-temperature magnetic susceptibility and magnetization measurements, and the results reveal that there exist antiferromagnetic interactions.  相似文献   

10.
The reaction of Ag2O with a mixture of benzene-1,3,5-tricarboxylic acid (H3BTC) and 2-aminopyrazine (APYZ) under the ammoniacal conditions gives rise to a novel metal–organic coordination polymer Ag6(BTC)2(APYZ)6·9H2O (1). The structure of 1 possesses a high ordered lamella 2D structure with an interesting graphite-like 63 net which is comprised of Ag4 and Ag6 fused hexagonal rings respectively. 1 exhibits photoluminescence maximized at 416 nm upon 330 nm excitation at room temperature, which may be mainly ascribed to ligand-to-ligand charge transfer (LLCT). Semiconducting behavior was also measured at ambient temperature with σ values of 5.56 × 10−7 S cm−1 based on the π–π stacking and Ag(I)–π interactions.  相似文献   

11.
Solution studies showed the strong interaction of [5-(dimethylamino) naphthalene-1-sulfonyl 4-phenylsemicarbazide] (NSP) with Er(III) ions. NSP was used as a sensing material during construction of carbon paste Er(III) sensors. The electrodes were modified with 1-n-butyl-3-methylimidazolium tetrafluoroborate, [bmim]BF4, as room temperature ionic liquid (RTIL) and multi-walled carbon nanotube (MWCNT). Potentiometric sensors constructed with [bmim]BF4 and MWCNTs show better sensitivity, selectivity, response time, and response stability compared to Er(III) carbon paste sensors. The best performance for the modified sensor was obtained with an electrode composition of 20% [bmim]BF4, 20% NSP, 45% graphite powder and 15% MWCNT. This particular sensor formulation exhibits a Nernstian response (19.8 ± 0.3 mV decade−1) toward Er(III) ions in the range of 1.0 × 10−7 to 1.0 × 10−1 mol L−1 with a detection limit of 5.0 × 10−8 mol L−1. The proposed modified Er(III) sensor can be used over the pH range from 3.5 to 9.0.  相似文献   

12.
The two novel ion-pairs (PB-TPB and NB-TPB) of quaternary ammonium drugs; propantheline bromide (PB), N,N-Diisopropyl-N-methyl-N-[2-(xanthen-9ylcarbonyloxy)ethyl] ammonium bromide and neostigmine bromide (NB), 3-(dimethylcarbamoyloxy) phenyl]-trimethylazanium have been synthesized, respectively and incorporated in poly (vinyl chloride)-based membrane electrodes for the quantification of propantheline bromide and neostigmine bromide in different pharmaceutical preparations. The influences of membrane compositions on the potentiometric responses of membrane electrodes have been found to substantially improve the performance characteristics. The best performance was reported with membranes having composition (w/w) of PB-TPB or NB-TPB (6%): PVC (34%): o-NPOE (60%). The proposed electrodes exhibit nernstian response in the concentration ranges of 2.1 × 10−7 M to 1.0 × 10−2 M and 4.4 × 10−7 M to 1.0 × 10−2 M with detection limit of 1.5 × 10−7 M and 3.3 × 10−7 M, respectively. Both the membrane electrodes perform satisfactorily over pH ranges of (3.5–7.5 and 4.0–7.0) with fast response times (11 s and 13 s), respectively. These drugs (PB and NB) were further utilized as different ion-pairs of Prostaglandin E1 (PGE1) and Deoxycholate (DOC) in poly (vinyl chloride)-based membrane electrodes for the determination of bioavailability of Prostaglandin E1 and Deoxycholate in plasma of different patients.  相似文献   

13.
X. Fang  N. Ding  X.Y. Feng  Y. Lu  C.H. Chen   《Electrochimica acta》2009,54(28):7471-7475
LiNi0.5Mn1.5O4 powders are prepared via a new co-precipitation method. In this method, chloride salts are used as precursors and ammonia as a precipitator. The impurity of chlorine can be removed via a thermal decomposition of NH4Cl in the subsequent calcination. X-ray diffraction pattern reveals that the final product is a pure spinel phase of LiNi0.5Mn1.5O4. Scanning electron microscopy shows that the powders have an octahedron shape with a particle size of about 2 μm. Electrochemical test shows that the LiNi0.5Mn1.5O4 powders exhibit an excellent cycling performance and after 300 cycles, the capacity retention is 83%. The lithium diffusion coefficient is measured to be 5.94 × 10−11 cm2 s−1 at 4.1 V, 4.35 × 10−10 cm2 s−1 at 4.75 V and 7.0 × 10−10 cm2 s−1 at 4.86 V. The mechanism of capacity loss is also explored. After 300 cycles, the cell parameter ‘a’ decreases by 0.54% for the quenched sample (LiNi0.5Mn1.5O4−δ) and by 0.42% for the annealed sample (LiNi0.5Mn1.5O4). Besides, it is the first time to identify experimentally that the Ni and Mn ions dissolved in the electrolyte can be further deposited on the surface of anode.  相似文献   

14.
Highly organized (3-mercaptopropyl)trimethoxysilane (3-MPT) films have been prepared via self-assembled coupled with sol–gel linking technology. Horseradish peroxidase (HRP) is successfully immobilized onto the densely packed three-dimensional (3D) 3-MPT network and the direct electrochemistry of HRP is achieved without any electron mediators or promoters. Redox thermodynamics of HRP on the 3-MPT films, which is obtained from the temperature dependence of the reduction potential, suggests that the positive shift of redox potentials of HRP at the interface of 3-MPT originates from the solvent reorganization effects and conformational change of the polypeptide chain of HRP. Based on the direct electrochemistry and electrocatalytic ability of HRP, a sensitive third-generation amperometric H2O2 biosensor is developed with two linear dependence ranges of 5.0 × 10−7 to 1.0 × 10−4 and 1.0 × 10−4 to 2.0 × 10−2 mol L−1.  相似文献   

15.
A novel gadolinium selective coated graphite electrode based on 2,6-bis-[1-{N-cyanopropyl,N-(2-methylpridyl)}aminoethyl]pyridine [P] is described. The best performance was exhibited by the electrode having membrane composition P:NaTPB:PVC:NPOE as 8:4:30:58 (%, w/w). The electrode demonstrates excellent potentiometric characteristics towards gadolinium ion over several interfering ions. The electrode exhibited a Nernstian response to Gd3+ ion over a wide concentration range 2.8 × 10−7 to 5.0 × 10−2 M with a detection limit (6.3 ± 0.1) × 10−8 M and slope 19.6 ± 0.1 mV decade−1 of aGd3+. Furthermore, it showed a fast response time (12 s) and can be used for 2.5 months without significant divergence in its characteristics. Noticeably, the electrode can tolerate the concentration of different surfactants up to 1.0 × 10−4 M and can be used successfully in 30% (v/v) ethanol media and 10% (v/v) methanol and acetonitrile water mixture. The useful pH range of this sensor is 2.0 to 8.0. It is sufficiently selective and can be used for the determination of Gd3+ ions in waste water and rock samples. It also serves as a good indicator in the potentiometric titration of GdCl3 with EDTA.  相似文献   

16.
Novel copper-containing crystalline silicate mesoporous materials (SCMM) have been synthesized by the hydrothermal treatment of slurries of silicon–magnesium–copper hydroxide precipitates along with quaternary ammonium salt. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed a house-of-cards type structure consists of very thin platy silicates. Nitrogen adsorption–desorption isotherms of calcined material show that it has a high surface area (550 m2 g−1) and porosity properties. Pore characteristics are similar to that of MCM-41 and FSM-16, and fine-tuning of the pore size was achieved easily by modulating the synthesis temperature. Identification and the location of copper species in Cu-SCMM were done by X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR), respectively. ESR data of air-dried Cu-SCMM consist of clearly defined g||=2.34, A||=140×10−4 cm−1 and g=2.08 at room temperature and g||=2.34, A||=160×10−4 cm−1 and g=2.10 at 77 K. The resulting material exhibited superior catalytic activity towards the hydrogenation of α–β unsaturated aldehyde in supercritical carbon dioxide.  相似文献   

17.
The voltammetric behavior of 1-naphthol was studied with a poly (acridine orange) (PAO) film modified glass carbon electrode (GCE). The electrooxidation of 1-naphthol was an irreversible process with its oxidation overpotential at the PAO electrode 180 mV lower than that on the GCE. PAO electrode demonstrated electrocatalytic activity to the electrooxidation of 1-naphthol giving a greatly improved detection limit down to 8 × 10−8 mol L−1(S/N = 3). At the optimal experimental condition, the oxidation peak current from the PAO electrode was linearly proportional to the concentration of 1-naphthol in the range of 2 × 10−7 to 3.2 × 10−6 mol L−1 and 5.2 × 10−6 to 1.2 × 10−4 mol L−1. The differences of the oxidation peak potentials between 1-naphthol and the coexisted 2-naphthol was 170 mV allowing the selective detection of 1-naphthol in a mixed solution with 2-naphthol. The detection of 1-naphthol in tap water and river water was carried out with satisfactory results.  相似文献   

18.
The photoassisted degradation (HPLC-UV absorption), dehalogenation (HPLC-IC) and mineralization (TOC decay) of the flame retardants tetrabromobisphenol-A (TBBPA) and tetrachlorobisphenol-A (TCBPA) were examined in UV-irradiated alkaline aqueous TiO2 dispersions (pH 12), and for comparison the parent bisphenol-A (BPA, an endocrine disruptor) in pH 4–12 aqueous media to assess which factor impact most on the photodegradative process. Complete degradation (2.7–2.8 × 10−2 min−1) and dehalogenation (1.8 × 10−2 min−1) of TBBPA and TCBPA occurred within 2 h of UV irradiation, whereas only 45–60% mineralization (2.3–2.7 × 10−3 min−1) was complete within 5 h for the flame retardants at pH 12 and ca. 80% for the parent BPA. Factors examined in the pH range 4–12 that impact the degradation of BPA were the point of zero charge of TiO2 particles (pHpzc; electrophoretic method), particle or aggregate sizes of TiO2 (light scattering), and the relative number of OH radicals (as DMPO–OH adducts; ESR spectroscopy) produced in the UV-irradiated dispersion. Dynamics of BPA degradation (2.0–2.4 × 10−2 min−1) were pH-independent and independent of particle/aggregate size, but did correlate with the number of OH radicals, at least at pHs 4 to 8–9, after which the rates decreased somewhat at pH > 9 with decreasing adsorption owing to Coulombic repulsive forces between the very negative TiO2 surface and the anionic forms of BPA (pKas ca. 9.6–11.3), even though the number of OH radicals continued to increase at the higher pHs.  相似文献   

19.
Reactions of Katza (atza = 5-aminotetrazole-1-acetato) or Ka4-ptz (a4-ptz = 5-[N-acetato(4-pyridyl)]tetrazole) with PbCl2in aqueous solution, produced two new Pb(II) compounds, [PbCl(atza)]n (1) and [PbCl(a4-ptz)]n (2). Both compounds were structurally characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. In 1 or 2, the Pb(II) centers are connected through the atza or a4-ptz bridging ligand to form a two-dimensional layered structure. The luminescence properties of 1 and 2 were investigated at room temperature in the solid state.  相似文献   

20.
The photochemical behavior of [Ru(NO)(NO)2pc] (pc = phthalocyanine) is reported in this paper. In addition to ligand localized absorption bands (λ < 300 nm), the electronic spectrum of this complex in dichloromethane solution was dominated by an intense absorption at 640 nm characterized as Q-bands. Irradiation of [Ru(NO)(NO)2pc] at 366 and 660 nm led to the production of nitric oxide (NO) as detected by a NO-sensor. NO production by light irradiation at high energy involved excitation of dπ–π* transition, while a photoinduced electron transfer occurred at long wavelength irradiation. The NO quantum yields varied from 1.4 × 10−3 to 2.3 × 10−2 mol einstein−1, depending on oxygen concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号