首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has always been critical to develop high-performance polymeric materials with exceptional mechanical strength and toughness, thermal stability, and even healable properties for meeting performance requirements in industry. Conventional chemical cross-linking leads to enhanced mechanical strength and thermostability at the expense of extensibility due to mutually exclusive mechanisms. Such major challenges have recently been addressed by using noncovalent cross-linking of reversible multiple hydrogen-bonds (H-bonds) that widely exist in biological materials, such as silk and muscle. Recent decades have witnessed the development of many tailor-made high-performance H-bond cross-linked polymeric materials. Here, recent advances in H-bond cross-linking strategies are reviewed for creating high-performance polymeric materials. H-bond cross-linking of polymers can be realized via i) self-association of interchain multiple H-bonding interactions or specific H-bond cross-linking motifs, such as 2-ureido-4-pyrimidone units with self-complementary quadruple H-bonds and ii) addition of external cross-linkers, including small molecules, nanoparticles, and polymer aggregates. The resultant cross-linked polymers normally exhibit tunable high strength, large extensibility, improved thermostability, and healable capability. Such performance portfolios enable these advanced polymers to find many significant cutting-edge applications. Major challenges facing existing H-bond cross-linking strategies are discussed, and some promising approaches for designing H-bond cross-linked polymeric materials in the future are also proposed.  相似文献   

2.
Spider silk is a self-assembling biopolymer that outperforms most known materials in terms of its mechanical performance, despite its underlying weak chemical bonding based on H-bonds. While experimental studies have shown that the molecular structure of silk proteins has a direct influence on the stiffness, toughness and failure strength of silk, no molecular-level analysis of the nanostructure and associated mechanical properties of silk assemblies have been reported. Here, we report atomic-level structures of MaSp1 and MaSp2 proteins from the Nephila clavipes spider dragline silk sequence, obtained using replica exchange molecular dynamics, and subject these structures to mechanical loading for a detailed nanomechanical analysis. The structural analysis reveals that poly-alanine regions in silk predominantly form distinct and orderly beta-sheet crystal domains, while disorderly regions are formed by glycine-rich repeats that consist of 31-helix type structures and beta-turns. Our structural predictions are validated against experimental data based on dihedral angle pair calculations presented in Ramachandran plots, alpha-carbon atomic distances, as well as secondary structure content. Mechanical shearing simulations on selected structures illustrate that the nanoscale behaviour of silk protein assemblies is controlled by the distinctly different secondary structure content and hydrogen bonding in the crystalline and semi-amorphous regions. Both structural and mechanical characterization results show excellent agreement with available experimental evidence. Our findings set the stage for extensive atomistic investigations of silk, which may contribute towards an improved understanding of the source of the strength and toughness of this biological superfibre.  相似文献   

3.
Hierarchical self-assembly of small abiotic molecular modules interacting through noncovalent forces is increasingly being used to generate functional structures and materials for electronic, catalytic, and biomedical applications. The greatest control over the geometry in H-bond supramolecular architectures, especially in H-bonded supramolecular polymers, can be achieved by using conformationally rigid molecular modules undergoing self-assembly through strong H-bonds. Their binding strength depends on the multiplicity of the H-bonds, the nature of donor/acceptor pairs and their secondary attractive/repulsive interactions. Here a functionalized molecular module is described, which is capable of self-associating through self-complementary H-bonding patterns comprising four strong and two medium-strength H-bonds to form dimers. The self-association of these phenylpyrimidine-based dimers through directional H-bonding between two lateral pyridin-2(1H)-one units of neighboring molecules allows the formation of highly compact 1D supramolecular polymers by self-assembly on graphite. A concentration-dependent study by scanning tunneling microscopy at the solid-liquid interface, corroborated by dispersion-corrected density functional studies, reveals the controlled generation of either linear supramolecular 2D arrays, or long helical supramolecular polymers with a high shape persistence.  相似文献   

4.
Peptides that self‐assemble into cross‐β‐sheet amyloid structures constitute promising building blocks to construct highly ordered proteinaceous materials and nanoparticles. Nevertheless, the intrinsic polymorphism of amyloids and the difficulty of controlling self‐assembly currently limit their usage. In this study, the effect of electrostatic interactions on the supramolecular organization of peptide assemblies is investigated to gain insights into the structural basis of the morphological diversities of amyloids. Different charged capping units are introduced at the N‐terminus of a potent β‐sheet‐forming sequence derived from the 20–29 segment of islet amyloid polypeptide, known to self‐assemble into polymorphic fibrils. By tuning the charge and the electrostatic strength, different mesoscopic morphologies are obtained, including nanorods, rope‐like fibrils, and twisted ribbons. Particularly, the addition of positive capping units leads to the formation of uniform rod‐like assemblies, with lengths that can be modulated by the charge number. It is proposed that electrostatic repulsions between N‐terminal positive charges hinder β‐sheet tape twisting, leading to a unique control over the size of these cytocompatible nanorods by protofilament growth frustration. This study reveals the high susceptibility of amyloid formation to subtle chemical modifications and opens to promising strategies to control the final architecture of proteinaceous assemblies from the peptide sequence.  相似文献   

5.
In protein environments, proton transfer reactions occur along polar or charged residues and isolated water molecules. These species consist of H-bond networks that serve as proton transfer pathways; therefore, thorough understanding of H-bond energetics is essential when investigating proton transfer reactions in protein environments. When the pKa values (or proton affinity) of the H-bond donor and acceptor moieties are equal, significantly short, symmetric H-bonds can be formed between the two, and proton transfer reactions can occur in an efficient manner. However, such short, symmetric H-bonds are not necessarily stable when they are situated near the protein bulk surface, because the condition of matching pKa values is opposite to that required for the formation of strong salt bridges, which play a key role in protein–protein interactions. To satisfy the pKa matching condition and allow for proton transfer reactions, proteins often adjust the pKa via electron transfer reactions or H-bond pattern changes. In particular, when a symmetric H-bond is formed near the protein bulk surface as a result of one of these phenomena, its instability often results in breakage, leading to large changes in protein conformation.  相似文献   

6.
Clusters have the potential to serve as building blocks of materials, enabling the tailoring of materials with novel electronic or magnetic properties. Historically, there has been a disconnect between magic clusters found in the gas phase and the synthetic assembly of cluster materials. We approach this challenge through a proposed protocol that combines gas-phase investigations to examine feasible units, theoretical investigations of energetic compositional diagrams and geometrical shapes to identify potential motifs, and synthetic chemical approaches to identify and characterize cluster assemblies in the solid state. Through this approach, we established As7(3-) as a potential stable species via gas-phase molecular beam experiments consistent with its known existence in molecular crystals with As to K ratios of 7:3. Our protocol also suggests another variant of this material. We report the synthesis of a cluster compound, As7K1.5(crypt222-K)1.5, composed of a lattice of As7 clusters stabilized by charge donation from cryptated K atoms and bound by sharing K atoms. The bond dimensions of this supercluster assembled material deduced by X-ray analysis are found to be in excellent agreement with the theoretical calculations. The new compound has a significantly larger band gap than the hitherto known solid. Thus, our approach allows the tuning of the electronic properties of solid cluster assemblies.  相似文献   

7.
针对板式橡胶支座梁桥在汶川地震中大面积失效的现象,基于震害调查资料对这类桥梁的典型横向震害特征进行了总结,然后基于试验成果和理论分析模型,采用增量动力分析研究了典型桥例的地震损伤过程,并与震害特征进行对比验证,采用参数分析揭示了桥梁横向震害特征的关键影响因素及其规律。研究表明:板式橡胶支座梁桥的典型横向震害是位移失控,其结构性损伤很轻;支座的柔性和滑移对墩柱抗震有利,但当地震动较大时,挡块脆断会造成梁体严重移位、支座脱空;挡块的强度、变形能力、间隙和支座的摩擦因数都是横向震害的影响因素;强度和变形能力越大,挡块限位效果越好,但强度增大会造成墩柱延性系数成倍增长,而变形增大对墩柱的影响明显更小;间隙是保证支座隔震和挡块限位的重要方面,不宜过大也不宜过小,该研究中桥例取5 cm时可达最优效果;摩擦因数对支座隔震效果的影响很大,摩擦因数越大,墩柱的延性系数也越高;改善挡块变形可达到与提高强度相同的限位效果,且对支座隔震的阻碍更小。因此,对传统挡块进行改进宜从提高其变形的角度出发,工程应用中可综合优化挡块的强度和变形来实现预期抗震目标。  相似文献   

8.
DNA nanotechnology provides a versatile foundation for the chemical assembly of nanostructures. Plasmonic nanoparticle assemblies are of particular interest because they can be tailored to exhibit a broad range of electromagnetic phenomena. In this Letter, we report the assembly of DNA-functionalized nanoparticles into heteropentamer clusters, which consist of a smaller gold sphere surrounded by a ring of four larger spheres. Magnetic and Fano-like resonances are observed in individual clusters. The DNA plays a dual role: it selectively assembles the clusters in solution and functions as an insulating spacer between the conductive nanoparticles. These particle assemblies can be generalized to a new class of DNA-enabled plasmonic heterostructures that comprise various active and passive materials and other forms of DNA scaffolding.  相似文献   

9.
The collective phenomena exhibited by artificial active matter systems present novel routes to fabricating out‐of‐equilibrium microscale assemblies. Here, the crystallization of passive silica colloids into well‐controlled 2D assemblies is shown, which is directed by a small number of self‐propelled active colloids. The active colloids are titania–silica Janus particles that are propelled when illuminated by UV light. The strength of the attractive interaction and thus the extent of the assembled clusters can be regulated by the light intensity. A remarkably small number of the active colloids is sufficient to induce the assembly of the dynamic crystals. The approach produces rationally designed colloidal clusters and crystals with controllable sizes, shapes, and symmetries. This multicomponent active matter system offers the possibility of obtaining structures and assemblies that cannot be found in equilibrium systems.  相似文献   

10.
《Advanced Powder Technology》2021,32(11):4058-4069
Particle shape is an important factor that affects particle breakage and the mechanical behaviour of granular materials. This report explored the effect of angularity on the mechanical behaviour of breakable granular materials under triaxial tests. Various angular particles are generated using the quasi-spherical polyhedron method. The angularity α is defined as the mean exterior angle of touching faces in a particle model. A breakable particle is constructed as an aggregate composed of coplanar and glued Voronoi polyhedra. After being prepared under the densest conditions, all assemblies were subjected to triaxial compression until a critical state was reached. The macroscopic characteristics, including the shear strength and dilatancy response, were investigated. Then, particle breakage characteristics, including the extent of particle breakage, breakage pattern and correlation between the particle breakage and energy input, were evaluated. Furthermore, the microscopic characteristics, including the contact force and fabric anisotropy, were examined to probe the microscopic origins of the shear strength. As α increases, the peak shear strength increases first and then remains constant, while the critical shear strength generally increases. Assemblies with larger angularity tend to cause more serious particle breakage. The relative breakage is linearly correlated with α under shear loading. Compared with unbreakable particles, the peak shear strength and the critical volumetric strain decline, and the degree of decline linearly increases with increasing α.  相似文献   

11.
Mechanical behaviour of structural materials such as metamorphic or sedimentary rocks and block masonry assemblies is strongly influenced by intrinsic anisotropy. Directional effects of cleavage, bedding or mortar joints are quite dominant, as are those due to inelastic strains. Accounting for this feature and the low tensile strength an incremental elastic-plastic model with zero strength in tension and work-hardening in biaxial compression is proposed. This model is formulated on the basis of a linearized failure condition achieved either theoretically or experimentally and enjoys a simple hardening rule. Merits and limitations are discussed in view of numerical analysis.  相似文献   

12.
New generation of lightweight structures and technologies enables the development of materials to exhibit superior property combinations. In the present work, cellular automata is used to address the problem of dislocation behaviour and 4 factors: (i) a high density of dislocations, (ii) sub-nanometre intragranular solute clusters, (iii) 2 geometries of nanometre-scale intergranular solute structures and (iv) grain sizes tens of nanometres in diameter featuring in aluminium alloys containing a nanostructural hierarchy and exhibiting record strength with good ductility—an aerospace grade 7075 alloy exhibits a yield strength of 1 GPa and total elongation to failure of 9 %. We show that the clusters and geometries of nanometre-scale intergranular solute structures govern the strength of such material, resulting in their increasing elongation. Our results demonstrate that this simulation explains the phenomena of the super-strong materials of new generation with entirely new regimes of property-performance space.  相似文献   

13.
DNA base-gold interactions are studied theoretically at the DFT level using Au(3) and Au(4) clusters as simple catalytic models for Au particles. The bonding between DNA bases and gold clusters occurs via the anchoring of a Au atom to the N or O atoms of the bases. In the most stable planar base-Au(3) complexes, the Au-N or Au-O anchor bonds are reinforced by N-H...Au bonds. The mechanism of formation of these nonconventional H-bonds is discussed.  相似文献   

14.
Liposomes are lipid bilayer-bound micron scale structures critical to therapeutic treatments, biophysical studies, cosmetics, food, constrained volume experiments, and gene transfer. Applying an electric field to separate mixtures of liposomes played a role in their discovery and is still presently used for a variety of processes. Our group has found agreement between models of electric field-induced transport and capillary electrophoresis measurements where the liposomes are described as slightly elongated with the charged lipids migrating to form a local dipole. Here we show much more diverse structures that cannot be accounted for in these models. A variety of morphologies emerge, from individual liposomes being stretched into nanotubules several microns in length to long-range organized assemblies of liposomes over tens of microns. Based in this result, existing theories for electromigration of soft particles need to be re-addressed. Also, the formation of nanoscale lipid tubules suggests that unique structures for bionanoengineering can be fabricated. Much higher intrinsic fields than those applied here are observed in biology that suggests mechanical electrostatic interaction may play role in shape and function of individual biological membranes and networks of membrane-bound structures.  相似文献   

15.
This paper presents a study on the macroscopic shear strength characteristics of granular assemblies with three- dimensional complex-shaped particles. Different assemblies are considered, with both isotropic and anisotropic particle geometries. The study is conducted using the discrete element method (DEM), with so-called sphero-polyhedral particles, and simulations of mechanical true triaxial tests for a range of Lode angles and confining pressures. The observed mathematical failure envelopes are investigated in the Haigh–Westergaard stress space, as well as on the deviatoric-mean pressure plane. It is verified that the DEM with non-spherical particles produces results that are qualitatively similar to experimental data and previous numerical results obtained with spherical elements. The simulations reproduce quite well the shear strength of assemblies of granular media, such as higher strength during compression than during extension. In contrast, by introducing anisotropy at the particle level, the shear strength parameters are greatly affected, and an isotropic failure criterion is no longer valid. It is observed that the strength of the anisotropic assembly depends on the direction of loading, as observed for real soils. Finally simulations on a virtual shearing test show how the velocity profile within the shear band is also affected by the grain’s shape.  相似文献   

16.
Lomander A  Hwang W  Zhang S 《Nano letters》2005,5(7):1255-1260
Here we report the hierarchical self-assembly of a cross-linkable coiled-coil peptide containing an internal cysteine. Atomic force microscopy (AFM) experiments revealed the fractal structure of the assemblies, and molecular simulations showed that the peptides cross-linked to form clusters of coiled-coils, which further assembled to form globules of tens of nanometers in diameter. Such hierarchical organization was modulated by pH or thiol-reducing agent. Exploitation of the fractal structures through chemical methods may be valuable for the fabrication of materials spanning multiple length scales.  相似文献   

17.
Interfacial properties between carbon fibres and poly(vinylidene fluoride) (PVDF) were tuned by modifying both constituents. Atmospheric plasma fluorination (APF) was utilised to tailor the surface composition of carbon fibres, which resulted in an incorporation of up to 3.7 at.% of fluorine functionalities in to the fibre surfaces. The PVDF matrix was modified by blending pure PVDF with maleic anhydride (MAH) grafted PVDF. Both fibre and matrix modifications act in synergy with improvements of up to 50% in the apparent interfacial shear strength (IFSS) above the level of pure fibre or matrix modification. Modification of both constituents led to the formation of various interactions at the fibre/matrix interface namely dispersive and polar (H-bonds) between (modified) PVDF and the fluorine as well as oxygen functionalities on the fibre surfaces. The apparent IFSS between the modified fibres and matrix reaches a maximum of 42 MPa, which is almost the tensile strength of the pure PVDF. The improvements in apparent IFSS in single fibre model composites for both fibre and matrix modifications translated to a seven times improvement in the interlaminar shear strength of unidirectional composites.  相似文献   

18.
One of the questions that still remain unanswered among researchers dealing with granular materials is how far the particle shape affects the micro-macroscopic features of granular assemblies under mechanical loading. The latest advances made with particle instrumentation allow us to capture realistic particle shapes and size distribution of powders to a fair degree of accuracy at different length scales. Industrial applications often require information on the micromechanical behaviour of granular assemblies having different particle shapes and varying surface characteristics, which still remains largely unanswered. Traditionally, simulations based on discrete element method (DEM) idealise the shape of individual particles as either circular or spherical. In the present investigation, we analyse the influence of particle shape on the shear deformation characteristics of two dimensional granular assemblies using DEM. We prepared the assemblies having nearly an identical initial packing fraction (dense), but with different basic shapes of the individual particles: (a) oval and (b) circular for comparison purposes. The granular assemblies were subjected to bi-axial compression test. We present the evolution of macroscopic strength parameters and microscopic structural/topological parameters during mechanical loading. We show that the micromechanical properties of granular systems are significantly influenced by the shape of the individual particles constituting the granular assemblies.  相似文献   

19.
基于常规三轴试验的岩石双剪强度准则   总被引:3,自引:0,他引:3  
基于岩土体的双剪强度理论和已有的一些岩石真三轴强度试验资料,提出了一个岩石双剪强度准则的推广型式,探讨了该强度准则相关参数的选取问题,验证了该强度准则的合理性,并指出双剪强度准则有一个)()(8mfgsqts=的函数表达型式。研究表明岩石的tc88/tt随平均主应力ms的变化而变化,当ms较小时tc88/tt比值较大,而当ms较大时tc88/tt比值较小。这种现象一方面论证了随着ms的增大,岩石有逐步向着均质化方向发展的趋势;另一方面也说明了在较低的ms应力水平下,Drucker-Prager强度准则对岩石类材料是不适合的。  相似文献   

20.
Capabilities for controlled formation of sophisticated 3D micro/nanostructures in advanced materials have foundational implications across a broad range of fields. Recently developed methods use stress release in prestrained elastomeric substrates as a driving force for assembling 3D structures and functional microdevices from 2D precursors. A limitation of this approach is that releasing these structures from their substrate returns them to their original 2D layouts due to the elastic recovery of the constituent materials. Here, a concept in which shape memory polymers serve as a means to achieve freestanding 3D architectures from the same basic approach is introduced, with demonstrated ability to realize lateral dimensions, characteristic feature sizes, and thicknesses as small as ≈500, 10, and 5 µm simultaneously, and the potential to scale to much larger or smaller dimensions. Wireless electronic devices illustrate the capacity to integrate other materials and functional components into these 3D frameworks. Quantitative mechanics modeling and experimental measurements illustrate not only shape fixation but also capabilities that allow for structure recovery and shape programmability, as a form of 4D structural control. These ideas provide opportunities in fields ranging from micro‐electromechanical systems and microrobotics, to smart intravascular stents, tissue scaffolds, and many others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号