首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
刘思涵 《润滑与密封》2023,48(12):187-193
采用柔性石墨、造粒石墨和鳞片石墨分别制备粉末冶金烧结摩擦材料,研究不同种类片状石墨对摩擦材料摩擦磨损性能的影响。结果表明:不同种类石墨制备的摩擦材料的密度和力学强度差异,将影响材料基体在制动过程中的组织形态,使摩擦界面呈现不同的磨损形式,其中柔性石墨摩擦材料的主要磨损机制为氧化磨损,造粒石墨摩擦材料的主要磨损机制为犁削磨损和磨粒磨损,鳞片石墨摩擦材料的主要磨损机制为犁削磨损和黏着磨损;造粒石墨制备的摩擦材料在不同速度下制动和重复单次制动时的摩擦因数波动值较小,摩擦因数稳定性好,且具有适中的磨耗量,综合摩擦磨损性能最佳。  相似文献   

2.
针对精密下料中存在的圆形锤头棒料摩擦副磨损严重问题,借助WTM-2E型可控气氛摩擦磨损试验仪,研究了不同转速和不同质量分数纳米MoS2添加剂下的GCr15钢块45钢柱摩擦副的摩擦磨损性能。结果表明:随着上摩擦副(45钢柱)的转速增加,磨损行程变长,摩擦因数和磨损量呈减小趋势,磨损表面形态由黏着磨损转变为磨粒磨损。采用声发射技术对摩擦副表面磨损状态进行实时监测,定量确定出质量分数为0.5%的纳米MoS2添加剂的减摩抗磨效果最佳。  相似文献   

3.
水润滑橡胶/镀镍钢配副摩擦磨损机理研究   总被引:1,自引:0,他引:1  
对水润滑轴承专用橡胶/镀镍钢配副分别在干摩擦、边界润滑条件下用数显式高速环块摩擦磨损试验机进行了摩擦磨损试验,并借助SEM分析了其摩擦磨损机理。结果表明:千摩擦条件下主要为粘着磨损,边界润滑条件下主要为磨粒磨损。  相似文献   

4.
超音速火焰喷涂WC-Co涂层耐磨性研究   总被引:4,自引:0,他引:4  
利用超音速火焰喷涂(HVOF)工艺制备了WC-Co涂层,测定了涂层孔隙率、显微硬度及干摩擦磨损过程中涂层材料失重,得出涂层干摩擦因数随时间的变化关系,分析了涂层摩擦磨损机制。结果表明,WC-Co涂层致密,平均孔隙率为1.29%,显微硬度达1140HV(测试载荷2.94N),干摩擦条件下材料失重低于电镀Cr镀层2个数量级;摩擦初期,干摩擦因数迅速增加,主要磨损特征是粘结相富Co区的犁沟切削,摩擦中后期,摩擦副间实际接触面积增大,摩擦因数变化较小,磨损趋于稳定。WC-Co涂层的主要磨损机制是疲劳磨损和犁沟切削。  相似文献   

5.
采用盘销式摩擦磨损试验机,对SiCp含量为20vol%的铝基复合材料和Kevlar增强摩擦材料组成的摩擦副在于摩擦条件下的摩擦磨损机理进行了实验研究。结果表明:摩擦副在跑合过程中,铝基复合材料中的SiCp颗粒对较软的有机复合材料产生犁削和微观切削效应,磨损机理为铝基复合材料的硬质颗粒对较软的有机复合材料的磨粒磨损;在跑合后的磨损试验中,摩擦材料磨损表面呈现出粘着磨损和塑性变形特征,随着转动速度的增加,塑性流动加剧;摩擦副接触表面发生材料的相互转移,并在铝基复合材料表面形成转移膜,且在较高速度下转移膜更易形成;在高速条件下,摩擦材料表面可见从铝基复合材料的铝合金基体中脱离的SiCp颗粒和熔融迹象;摩擦材料的磨损机理主要为磨粒磨损、粘着磨损和塑性变形。  相似文献   

6.
MoSi2/淬火45钢的干摩擦磨损性能   总被引:2,自引:0,他引:2  
采用M-2型磨损试验机研究了MoSi2/淬火45钢的干摩擦磨损特性,并通过对电子扫描显微镜(SEM)和X射线衍射仪观察了试件的磨损表面形貌,分析了磨屑的成分,探讨了其摩擦磨损机理。结果表明,随着载荷的增大,摩擦机理主要表现为微观滑动和粘着效应,低载荷下的磨损机制以疲劳磨损为主,高载荷下的磨损机制主要表现为粘着磨损。  相似文献   

7.
通过摩擦磨损实验与电子探针分析,对摩擦磨损过程中减摩抗磨剂MoDTP的变化及其与摩擦副材料Ni-W-P镀层之间发生的摩擦化学反应,包括产物类型、形成机理及摩擦磨损特性进行了深入的研究。结果表明,MoDTP与Ni-W-P有良好的协同效应,可大幅度提高摩擦副的抗磨性和减摩性。  相似文献   

8.
制备了铁基形状记忆合金Fe-17Mn-5Si-10Cr-5Ni,通过磨损试验、XRD分析、SEM观察等研究了该合金在干摩擦和油摩擦下的摩擦磨损特性,并和高锰钢的耐磨性进行了对比。研究表明,在干摩擦条件下,该合金呈典型粘着磨损特征,磨损表面没有ε马氏体,其耐磨性较差,低于高锰钢;在油摩擦条件下,该合金呈磨粒磨损特征,磨损表面存在较多的ε马氏体,耐磨性较好,高于高锰钢;Fe-17Mn-5Si-10Cr-5Ni形状记忆合金油摩擦时耐磨性好的主要原因在于摩擦过程中的应力诱发γ→ε马氏体相变。  相似文献   

9.
采用销-盘摩擦磨损试验机对制动闸片用碳陶复合材料开展了雨水环境下的载流摩擦磨损试验,研究了不同摩擦条件下碳陶复合材料的摩擦磨损性能。结果表明:在无载流的雨水环境中,随着雨水流量由0增大到1 mL·min-1,碳陶复合材料的表面粗糙度显著下降,摩擦因数和磨损率小幅度降低,磨损机理主要为剥落和轻微的氧化磨损;在无雨水的载流条件下,随着电流强度由0增加到100 A,表面粗糙度和摩擦因数均显著下降,磨损率明显升高,主要磨损机理为剥落、磨粒磨损、黏着磨损和电弧烧蚀;相对于单因素作用,在载流和雨水的共同作用下,表面粗糙度和摩擦因数明显降低,但磨损率随着雨水流量或电流强度增加的规律不明显,磨损机理为剥落、氧化磨损、磨粒磨损和黏着磨损。  相似文献   

10.
HIP-Si3N4陶瓷/45#钢副干摩擦和水润滑下摩擦学性能   总被引:2,自引:0,他引:2  
利用MPX-2000型盘销式摩擦磨损试验机考察了HIP—Si3N4陶瓷/45^#钢副在干摩擦和水润滑下的摩擦磨损性能;用扫描电子显微镜观察了试件表面的磨损状态;采用X射线电子能谱仪分析了摩擦表面的化学成分:结果表明:干摩擦条件下,HIP—Si3N4陶瓷的磨损速率比45^#钢小,45^#钢发生粘着磨损,HIP—Si3N4陶瓷发生了脆性断裂和脱落;水润滑条件下,摩擦表面产生了Si(OH)4反应膜,降低了磨损,主要是化学腐蚀磨损。  相似文献   

11.
Manchang Gui  Suk Bong Kang  Jung Moo Lee 《Wear》2000,240(1-2):186-198
The dry sliding wear of spray deposited Al–6Cu–Mn alloy was studied as a function of applied load in the range of 5–400 N. The variation of wear rate with applied load was obtained, from which four regions can be observed. On the basis of observations and analyses on the worn surface, the worn subsurface, the wear debris and friction coefficient, wear mechanism in different regions has been identified. Two wear regimes, i.e. mild and severe wear, were displayed in the entire applied load range. The transition from mild to severe wear occurred at a critical load. Mild wear involves three regions in the wear rate vs. load variation, and the wear in each region was controlled by different wear mechanism. With increasing load, the dominant wear mechanism in the period of mild wear displays successively oxidative wear, delamination and subsurface-cracking assisted adhesive wear. Severe wear was operated by the adhesive wear mechanism and the wear debris was formed by the shear fracture of subsurface material of the pin. The transition from mild to severe wear depended on the strength of the material of the pin adjacent to the contact surface and the strain-induced shear stress created by applied load.  相似文献   

12.
Previous reports have described the differences in the friction and wear behavior between different zones of human teeth. The objective of this research was to study the friction and wear behavior of human teeth under different wear conditions to extend the understanding of the tooth wear process, as well as to provide a more rational explanation for wear mechanism of teeth. Two typical wear tests, namely two- and three-body wear, were conducted on human tooth enamel using a reciprocating apparatus. The effect of food particles was of particular interest. Three loads, 10, 20 and 40 N, were used. Wear was assessed by sample wear volume. The results show that human tooth enamel exhibits lower friction and smaller wear volume under three-body wear conditions than under two-body wear conditions. Under three-body wear conditions, although increasing normal load results in a progressive increase in the wear volume of enamel, the increasing rate is lower at high load than that under two-body wear conditions. Further analysis of wear surfaces indicates that human tooth enamel experiences different wear mechanisms under different wear conditions.  相似文献   

13.
In this paper, a Multi-layer perceptron (MLP) neural network was used to predict tool wear in face milling. For this purpose, a series of experiments was conducted using a milling machine on a CK45 work piece. Tool wear was measured by an optical microscope. To improve the accuracy and reliability of the monitoring system, tool wear state was classified into five groups, namely, no wear, slight wear, normal wear, severe wear and broken tool. Experiments were conducted with the aforementioned tool wear states, and different machining conditions and data were extracted. An increase in current amplitude was observed as the tool wear increased. Furthermore, effects of parameters such as tool wear, feed, and cut depth on motor current consumption were analyzed. Considering the complexity of the wear state classification, a multi-layer neural network was used. The root mean square of motor current, feed, cut depth, and tool rpm were chosen as the input and amount of flank wear as the output of MLP. Results showed good performance of the designed tool wear monitoring system.  相似文献   

14.
分析了复合走丝电火花线切割机床走丝方式改电极丝单边磨损为周边磨损的情况,对比研究了周边磨损与快走丝方式电极丝单边磨损后的横截面惯矩,结果表明电极丝周边磨损的截面抗弯刚度大于单边磨损在磨损方向的截面抗弯刚度。试验证明,采用复合走丝方式加工,减少了断丝现象,提高了加工稳定性,改善了加工性能指标。  相似文献   

15.
L. J. Yang 《摩擦学汇刊》2013,56(3):369-375
The integrated adhesive wear model tokes into account both the transient wear and the steady-state wear in wear testing. The transient wear volume is described by an exponential equation while the steady-state wear by a revised Archard's equation. In this study, the integrated wear model was used to analyze experimental wear data obtained previously for an A6061-T6 alloy and MMC-D, an aluminium alloy matrix composite containing 20% spherical alumina particles. Two loads of 7.5 kgf and 10.0 kgf, and a speed of 4.58ms?1 were used in conducting the experiments. Both the standard wear coefficient and the net steady-state wear coefficient values for both types of materials were determined. On the average, the average standard steady-state wear coefficient, as compared with the net steady-state wear coefficient, was about 52% higher for MMC-D and 246% higher for A6061-T6. A higher load was found to have the effect of increasing the wear coefficient values.  相似文献   

16.
Atomic force microscopy (AFM) is a key instrument in nanotechnology; however, AFM probe wear is a critical concern with AFM-based technologies. In this work, the wear progression of silicon AFM probes with different radii was thoroughly explored under various normal forces and sliding speeds. The results showed that the initial wear coefficient increased as the normal force increased. However, after a certain sliding distance, the wear coefficient was stable due to the flattening of the probe even with increasing normal force. It was also observed that the wear coefficient decreased with increasing probe radius and the wear of the probe increased as the sliding speed increased. From the overall results, it was concluded that the contact pressure plays a significant role in wear progression and may be responsible for a lower wear coefficient even with increasing adhesion forces due to wear. The wear rate was found to have an exponential dependence on contact stress, as proposed in recent literatures.  相似文献   

17.
A computational model to predict polyethylene wear in modular total knee replacements was developed. The results from knee simulator wear tests were implemented with finite element simulations to identify the wear factors of Archard's wear law. The calculated wear factor for the articular and backside surface was 1.03±0.22×10−7 mm3/Nm and 2.43±0.52×10−10 mm3/Nm, respectively. The difference in wear factors was attributed to differences in wear mode and wear mechanisms between the articular (mainly two-body rolling/sliding wear mode with an abrasive/adhesive wear mechanism) and the backside surfaces (mainly fretting wear mode with an adhesive wear mechanism).  相似文献   

18.
This article describes how a wheel–rail wear detection parameter based on noise was developed by running a rapid transit train instrumented with microphones in a depot with a small curve radius. This full-scale test made use of previous knowledge gained from lab-scale tests. The lab- and full-scale tests showed that noise could be used as an indicator of wear transition, when normal wear turns into severe or catastrophic wear. This transition was accompanied by a significant increase in sound pressure and a broader sound pressure amplitude spectrum; that is, a narrow initial amplitude distribution in the normal wear regime and a broader distribution in the severe wear regime. The measured noise from the inner/low and outer/high rails was analyzed in conjunction with the wear from the outer wheel and comparisons were made between cleaned (exposed to severe wear) and lubricated (no wear) rail. Based on those analyses, a wear detection parameter criterion was developed for this specific train. This wear parameter has been implemented in a real-time condition monitoring system so that warnings of the risk for severe wear could be sent to the maintenance department. Validation of the wear parameter and challenges linked to open system conditions are discussed in this article.  相似文献   

19.
The dry sliding wear of a medium carbon steel with different microstructures was measured under the normal load range of 50–150 N at 400°C by a pin-on-disc high-temperature wear setup. The wear behavior and wear mechanism were systematically studied; in particular, the characteristics of extrusive wear and the transition of wear mechanisms were investigated. Under low normal loads, the wear is oxidative type wear. Once the normal load reached a critical value, a mild-to-severe wear transition occurred, and subsequently an extrusive wear prevailed. The mild-to-severe wear transition depended on the microstructure of matrix; the critical normal load of the transition was 112.5 N for tempered sorbite, 125 N for lamellar pearlite, and 137.5 N for tempered martensite and tempered troostite. As oxidative wear prevailed, a thick oxide layer about 20–30 μ m and a plate-like wear debris with regular outline were recognized. However, as the extrusive wear occurred, the wear rate abruptly increased but the friction coefficient was reduced. The extrusive wear predominated due to thermal softening of the matrix and presented a superthin oxide layer (less than 0.5 μ m) and low oxide content on worn surfaces, accompanied by the appearance of ribbon-like wear debris.  相似文献   

20.
N. Santanam 《Wear》1983,90(2):261-267
The effect of wear particles on wear was investigated using a four-ball extreme pressure lubricant test apparatus. The wear particles present in both filtered and unfiltered oil samples were examined using a duplex Ferrograph analyser and a bichromatic microscope. The wear track widths were measured for various wear modes and were found to increase if the wear debris was recirculated. The size of the wear particles increased with test duration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号