首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
This paper presents a generic tool, named PLIO, that allows to implement the real-time operational control of water networks. Control strategies are generated using predictive optimal control techniques. This tool allows the flow management in a large water supply and distribution system including reservoirs, open-flow channels for water transport, water treatment plants, pressurized water pipe networks, tanks, flow/pressure control elements and a telemetry/telecontrol system. Predictive optimal control is used to generate flow control strategies from the sources to the consumer areas to meet future demands with appropriate pressure levels, optimizing operational goals such as network safety volumes and flow control stability. PLIO allows to build the network model graphically and then to automatically generate the model equations used by the predictive optimal controller. Additionally, PLIO can work off-line (in simulation) and on-line (in real-time mode). The case study of Santiago-Chile is presented to exemplify the control results obtained using PLIO off-line (in simulation).  相似文献   

2.
The quality of potable water has been a major issue in the water industry for the last few decades. The deterioration of treated water can be due to physical, chemical or microbiological changes that occur in the water during distribution. In addition, pipe material and decay of a disinfectant agent can affect the quality of the water being distributed. In this study the purpose was to simulate the decay of chlorine in two networks, one made of old cast iron (CI) pipes and another of polyethylene (PE) pipes. In addition the performance of the network considering chlorine concentration, velocity, water age, and an intrusion of a contaminant – in this case organic material – into the network was evaluated. The simulations were performed with EPANET software using as the simulation network an example network from the program. It was found that the CI network requires higher initial chlorine concentrations than the PE network to maintain the required minimum chlorine concentration throughout the whole network. To maintain the chlorine concentrations required by WHO (Cl must be greater than 0.2 mg/l and lesser than 0.5 mg/l) re-chlorination stations were necessary to add into both networks. The performance of both networks before re-chlorination was low due to high initial chlorine concentrations, but after the addition of the re-chlorination stations it was 100% throughout the networks. The performance of the velocities was good in both networks. The performance of the water age was dependent mainly on the tank usage, and the performance of contamination by organic material depended on the coefficient that defines the decay rate of the organic material in the bulk phase.  相似文献   

3.
The paper presents models for better environmental intelligent management within water supply systems. The following computer models were developed: supervising parameters (pressure and flow) of water supply network (classification models in the form of neural networks, hybrid neural networks, decision trees and multiple decision trees), forecasting of water supply network load in different intervals of time (prediction models in the form of neural networks and hybrid neural networks), preferences for network operator and consumer in the form of decision rules and decision trees, classification of exceptions, typical examples and preferences for controlling water flow, controlling of pumps in the water supply network in the form of decision and activity rules and controlling of pumps for filling up retention tanks in the form of decision and action rules. These models were compared with a view to obtaining optimal models to control the parameters of water supply networks. The models are embedded in intelligent decision support system with a knowledge acquisition module. The research was done for Municipal Water Supply and Sewage Company in Rzeszów, Poland.  相似文献   

4.
A technique for leakage reduction is pressure management, which considers the direct relationship between leakage and pressure. To control the hydraulic pressure in a water distribution system, water levels in the storage tanks should be maintained as much as the variations in the water demand allows. The problem is bounded by minimum and maximum allowable pressure at the demand nodes. In this study, a Genetic Algorithm (GA) based optimization model is used to develop the optimal hourly water level variations in a storage tank in different seasons in order to minimize the leakage level. Resiliency and failure indices of the system have been considered as constraints in the optimization model to achieve the minimum required performance. In the proposed model, the results of a water distribution simulation model are used to train an Artificial Neural Network (ANN) model. Outputs of the ANN model as a hydraulic pressure function is then linked to a GA based optimization model to simulate hydraulic pressure and leakage at each node of the water distribution network based on the water level in the storage tank, water consumption and elevation of each node. The proposed model is applied for pressure management of a major pressure zone with an integrated storage facility in the northwest part of Tehran Metropolitan area. The results show that network leakage can be reduced more than 30% during a year when tank water level is optimized by the proposed model.  相似文献   

5.
Water distribution networks are high energy and low efficiency systems, where water pressure is frequently reduced by dissipation valves to limit leakage. The dissipation produced by the valves can be converted to energy production to increase the efficiency and reduce the energy impact of networks. If valves are replaced by turbines or pumps as turbines (PATs), they can both reduce pressure and produce energy. This study focuses on the optimal location of PATs within a water distribution network in order to both produce energy and reduce leakage. A new optimization model is developed consisting of several linear and non-linear constraints and a newly proposed objective function, where the turbine installation costs as well as the energy production and the economic saving due to the reduction of leakage can be accounted all together. The case study shows that the application of the mathematical model to a synthetic network ensures better results, in terms of both energy production and water saving, in comparison to other procedures.  相似文献   

6.
Pressure management is one of the most significant water demand management methods to reduce leakage in water distribution networks. Leak as an adverse event is directly related to the pressure. Therefore, reducing extra network pressure decreases leakage in water distribution networks. The pressure reducing valves have some disadvantage. For example, they break down quickly. Therefore, in this study, a novel system named Pressure Reducing Flexible Storage (PRFS) was introduced that hasn’t these disadvantages and it could consider a good alternative for pressure reducing valves in water distribution networks. In this system, a spherical tank containing a flexible rubber cover was installed at the network node. By increasing the pressure in the conjunction, the foam was compressed and reduced the pressure. In this study, the presented system was simultaneously modeled by using Flow-3D and ABAQUS softwares, and pressure decrement was estimated in the conjunction. The results show that the proposed system can decrease the pressure in the conjunctions of water distribution network by about 18%. Therefore, it could be considered as a good alternative for pressure reducing valves in water distribution networks.  相似文献   

7.
In water supply systems, the potential exists for micro-hydropower that uses the pressure excess in the networks to produce electricity. However, because urban drinking water networks are complex systems in which flows and pressure vary constantly, identification of the ideal locations for turbines is not straightforward, and assessment implies the need for simulation. In this paper, an optimization algorithm is proposed to provide a selection of optimal locations for the installation of a given number of turbines in a distribution network. A simulated annealing process was developed to optimize the location of the turbines by taking into account the hourly variation of flows throughout an average year and the consequent impact of this variation on the turbine efficiency. The optimization is achieved by considering the characteristic and efficiency curves of a turbine model for different impeller diameters as well as simulations of the annual energy production in a coupled hydraulic model. The developed algorithm was applied to the water supply system of the city Lausanne (Switzerland). This work focuses on the definition of the neighborhood of the simulated annealing process and the analysis of convergence towards the optimal solution for different restrictions and numbers of installed turbines.  相似文献   

8.
The rapid population growth of cities in developing countries (DC) make difficult to distribute the available potable water (PW) with equality. The distribution problem arises from an insufficient amount of PW and because cities water distribution systems (WDS) are not efficient. The novelty of this paper is a self-tuning controller (STC) proposed to manage, along the day, the pressure of water through the nodes of a WDS. It means, pressure management (PM) is proposed to control water levels (WLs) in householders tanks (HTs). The objective is to satisfy with equality the PW demand at different zones of a city forcing the flow of water by managing the pressure. The proposed STC performance is tested on the digital simulator developed to characterize the hydraulic operation of a WDS. The dynamic behaviour of the WDS is determined by the variation of the WL in the tanks of the WDS when water is supplied or extracted from them. The WDS of Mexico City is analysed and the proposed STC is applied to a simplified WDS. The results allow to conclude that the proposed STC could become a supporting tool for the decision making of WDS operators.  相似文献   

9.
The optimal design of a water distribution network is a simulation-optimization task that should consider conflicts between different groups of stakeholders directly or indirectly. Investors and consumers are two groups of stakeholders with conflicting goals. Young’s bargaining method is a decision tool based on game theory that can help decision-makers to select one of the design alternatives by considering utilities of stakeholders. In this paper, the optimal design of two benchmark network problems (Two-loop and Hanoi networks) is considered with minimization of design cost and maximization of system efficiency, with respect to increasing hydraulic pressure. In this regard, decision alternatives are first determined by using a multi-objective, fast, messy genetic algorithm (MOFMGA). Young’s bargaining method is then applied with different combinations of utility functions of stakeholders. Results show that the use of the same utility functions for both stakeholders improves 63.23% and 24.47% of investor goals and 79.08% and 45.69% of consumer goals compared to the worst possible alternatives in the Two-loop and Hanoi networks, respectively. Moreover, both investor and consumer goals improve 6.19% and 7.14% in the Two-loop and 22.73% and 6.07% in the Hanoi network using a more concave utility function whose emphasis is on stakeholder utility, respectively.  相似文献   

10.
Simulation models for water distribution networks are used routinely for many purposes. Some examples are planning, design, monitoring and control. However, under conditions of low pressure, the conventional models that employ demand-driven analysis often provide misleading results. On the other hand, almost all the models that employ pressure-driven analysis do not perform dynamic and/or water quality simulations seamlessly. Typically, they exclude key elements such as pumps, control devices and tanks. EPANET-PDX is a pressure-driven extension of the EPANET 2 simulation model that preserved the capabilities of EPANET 2 including water quality modelling. However, it cannot simulate multiple chemical substances at once. The single-species approach to water quality modelling is inefficient and somewhat unrealistic. The reason is that different chemical substances may co-exist in water distribution networks. This article proposes a fully integrated network analysis model (EPANET-PMX) (pressure-dependent multi-species extension) that addresses these weaknesses. The model performs both steady state and dynamic simulations. It is applicable to any network with various combinations of chemical reactions and reaction kinetics. Examples that demonstrate its effectiveness are included.  相似文献   

11.
To evaluate non revenue water (NRW) and losses in water distribution networks a methodology is developed by applying “annual water balance” and “minimum night flow” analyses. In this approach the main NRW components such as leakage from reported and un-reported bursts and background leakage, with real or estimated data, enabling assessment of indices of leakage performance are evaluated. Also, a novel procedure is introduced in this paper that can determine the nodal and pipe leakage by using a hydraulic simulation model. Recognising the pressure dependency of leakage the total consumption is divided into two parts, one pressure dependent and the other independent of local pressure, and the hydraulic behaviour of the network is analyzed. A computer code is developed to evaluate all components of water losses based on the proposed methodology. For better representation of the results and management of the system, the outputs are exported to a GIS model. Using the capabilities of this GIS model, the network map and attribute data are linked and factors affecting network leakage are identified. In addition, the effects of pressure reduction are investigated. The model is illustrated by a real case study. The results show that the suggested model has overcome the shortcomings of the existing methodologies by accounting for the leakage and other NRW components in water distribution networks more realistically.  相似文献   

12.
In many pressurized irrigation water distribution networks, rising energy costs are having a significant impact on system performance, environmental impact and the profitability of agribusinesses and farms dependant on water supplies for irrigated production. In this study, a new methodology is proposed for analysing the location of critical control points (hydrants) to reduce energy consumption. The methodology is developed and applied using two irrigation districts located in Southern Spain (Fuente Palmera and El Villar). The new approaches provide a framework for comparing different energy saving strategies, including improved critical point management and network sectoring. The results show that potential energy savings of around 10% and 30% are possible in each district when the theoretical irrigation requirements are modeled. However these savings reduce to 5% and 12% when the local farmers’ practices of deficit irrigation are incorporated. These results are compared to those obtained for networks sectoring in the same irrigation networks in a previous work. The study confirms that that a sectoring approach works best for reducing the energy costs associated with meeting actual irrigation water demands in irrigation districts where energy consumption is a limiting factor on production.  相似文献   

13.
The design of new water distribution networks (WDNs) is an important social problem. Failures during an operational period provoke deficits in consumption nodes thus decreasing the performance of the network. WDN performance can be defined as the ability to sufficiently secure demand and desirable pressure in nodes based on changes in design parameters. This paper focuses on the evaluation of network performance during an operational period, taking into account pipe roughness uncertainty. A network analysis is performed by generating probabilistic series of pipe roughness using Monte Carlo simulation (MCS) in the operational period of the Two-loop WDN. Results show that an increase in pipe roughness uncertainty causes a decrease in network performance in the operational period. Furthermore, the network has a desirable efficiency only in the first 10 years. Thus, the proposed design methodology that considers the uncertainty of design variables is an effective procedure to evaluate network performance.  相似文献   

14.
对上海市城市管网水质研究表明:上海市供水管网水质基本稳定,现有管网对管网水质影响不大,全市屋顶水箱水质与管网水质基本没有差别,但需进一步改善水箱密封性能及水箱材质,同时有关部门应立法加强对屋顶水箱管理。居民住宅或街坊目前使用的镀锌钢管需尽快有计划地进行改造;要进一步明确二次供水职责,提高管网水质的稳定性。科学合理的管网设计也是提高水质的有效措施。  相似文献   

15.
In water distribution systems (WDSs), the available flow at a demand node is dependent on the pressure at that node. When a network is lacking in pressure, not all consumer demands will be met in full. In this context, the assumption that all demands are fully satisfied regardless of the pressure in the system becomes unreasonable and represents the main limitation of the conventional demand driven analysis (DDA) approach to WDS modelling. A realistic depiction of the network performance can only be attained by considering demands to be pressure dependent. This paper presents an extension of the renowned DDA based hydraulic simulator EPANET 2 to incorporate pressure-dependent demands. This extension is termed “EPANET-PDX” (pressure-dependent extension) herein. The utilization of a continuous nodal pressure-flow function coupled with a line search and backtracking procedure greatly enhance the algorithm’s convergence rate and robustness. Simulations of real life networks consisting of multiple sources, pipes, valves and pumps were successfully executed and results are presented herein. Excellent modelling performance was achieved for analysing both normal and pressure deficient conditions of the WDSs. Detailed computational efficiency results of EPANET-PDX with reference to EPANET 2 are included as well.  相似文献   

16.
The problem of the ageing infrastructure of urban water distribution networks and the loss of water associated with this has been one of the greatest infrastructure problems in urban areas. When a leakage is detected in the water supply network, problems arise when seeking to rehabilitate the network. Therefore, the decision problem is to choose which components to add or to improve and to maximize the benefits, which will result from the changes implemented. In addition, it is important to minimize costs, since water supply companies have limited budgets. Moreover, there are often several leakage points in the same water supply network and in the same period of analysis. Therefore, this paper puts forward a model for rehabilitating the greatest number of leakage points in a water network; it respects the constraints which a water company may have. Promethee V is used to assist the decision maker (DM) in selecting a set of feasible alternatives for rehabilitating the network from the criteria and the constraints set by the DM on the problem. For demonstration purposes, the proposed model was tested in a simulated network.  相似文献   

17.
Effect of Breakage Level One in Design of Water Distribution Networks   总被引:6,自引:6,他引:0  
Design of water distribution networks (WDNs) that do not consider performance criteria would possibly lead to less cost but it could also decrease water pressure reliability in abnormal conditions such as a breakage of pipes of the network. Thus, awareness of the situation of consumption nodes, by considering water pressures and the amount of water that is being supplied, could be an effective source of information for designing high performance WDNs. In this paper, Two-loop and Hanoi networks are selected for least-cost design, considering water pressures and the amount of water supplied on each consumption node under breakage level one, using the honey-bee mating optimization (HBMO) algorithm. In each state of design, a specific pressure is defined as the minimum expected pressure under breakage level one which holds the pressure reliability in the considered range. Also, variations of some criteria such as reliabilities of pressure and demand, vulnerability of the network, and flexibility of the design are analyzed as a tool for choosing the appropriate state of design. Results show that a minor increase in the cost of design could lead to a considerable improvement in reliabilities of pressure and demand under breakage level one.  相似文献   

18.
The reliability of a water distribution network (WDN) is a function of several time-invariant and time-dependent factors affecting its components and connectivity, most important of which have been shown to be the network’s topology, its operating pressure, the type of key components (such as the diameter, length, material and age of water pipes) and the network’s historical performance (such as the number of previously observed failures in the network). In terms of network topology, this attribute even though generally thought as time-invariant it actually is time-dependent, as the paths in a water distribution network change over time based on the hydraulics in the network (water demand and water pressure/flow alter the way water flows in the piping network). The work described herein examines the time-dependent nature of a WDN topology and by means of a betweenness centrality index (BC) method demonstrates the effect of topology on the network’s vulnerability / reliability. The importance of the betweenness centrality index is demonstrated by use of a case-study water distribution network operated under both normal and abnormal conditions. The proposed method is also coupled with spatial mapping to indicate areas of concern in the network, and with a decision support system to assist in prioritizing actions to improve on the network’s robustness and resilience.  相似文献   

19.
The adoption of measures leading to higher efficiencies in the use of both water and energy in water distribution networks is strongly demanded. The methodology proposed combines a multi-objective approach and a financial analysis to determine de optimal design of pressurized irrigation networks which entails the minimization of both the investment cost and operational cost under three operating scenarios that incorporate energy saving strategies: 1- all hydrants operate simultaneously; 2- hydrants are grouped into sectors and irrigation turns are established; 3- the on-demand operation of the network is assumed. This methodology has been applied in a real irrigation network located in Southern Spain showing that the lowest overall design cost (investment and operational costs) is achieved in scenario 2. The comparison of the selected solutions in the three proposed scenarios with the current network design considering the total fulfillment of irrigation requirements showed that operational cost savings between 65% and 76% could be achieved.  相似文献   

20.
The optimization of looped water distribution systems is a complex problem as the pipe flows are unknown variables. Although many researchers have reported algorithms for minimizing the network cost applying a large variety of techniques, such as linear programming, non-linear programming, global optimization methods and meta-heuristic approaches, a totally satisfactory and efficient method is not available as yet. Many works have assessed the performance of these techniques using small or medium-sized benchmark networks proposed in the literature, but few of them have tested these methods with large-scale real networks. The aim of this paper is to evaluate the performance of several meta-heuristic techniques: genetic algorithms, simulated annealing, tabu search, and iterated local search. These techniques were first validated and compared by applying them to a medium-sized benchmark network previously reported in the literature. They were then applied to a large irrigation water distribution network that has been proposed in a previous work to assess their performance in a practical application. All the methods tested performed adequately well, compared with the results found in previous works. Genetic algorithm was more efficient when dealing with a medium-sized network, but other methods outperformed it when dealing with a real complex one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号