首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Bai  Yun  Bezak  Nejc  Sapač  Klaudija  Klun  Mateja  Zhang  Jin 《Water Resources Management》2019,33(14):4783-4797

Reservoir inflow forecasting is extremely important for the management of a reservoir. In practice, accurate forecasting depends on the feature learning performance. To better address this issue, this paper proposed a feature-enhanced regression model (FER), which combined stack autoencoder (SAE) with long short-term memory (LSTM). This model had two constituents: (1) The SAE was constructed to learn a representation as close as possible to the original inputs. Through deep learning, the enhanced feature could be captured sufficiently. (2) The LSTM was established to simulate the mapping between the enhanced features and the outputs. Under recursive modeling, the patterns of correlation in the short term and dependence in the long term were considered comprehensively. To estimate the performance of the FER model, two historical daily discharge series were investigated, i.e., the Yangtze River in China and the Sava Dolinka River in Slovenia. The proposed model was compared with other machine-learning methods (i.e., the LSTM, SAE-based neural network, and traditional neural network). The results demonstrated that the proposed FER model yields the best forecasting performance in terms of six evaluation criteria. The proposed model integrates the deep learning and recursive modeling, and thus being beneficial to exploring complex features in the reservoir inflow forecasting. Moreover, for smaller catchments with significant torrential characteristics, more data are needed (e.g., at least 20 years) to effectively train the model and to obtain accurate flood-forecasting results.

  相似文献   

2.
Researchers have studied to forecast the streamflow in order to develop the water usage policy. They have used not only traditional methods, but also computer aided methods. Some black-box models, like Adaptive Neuro Fuzzy Inference Systems (ANFIS), became very popular for the hydrologic engineering, because of their rapidity and less variation requirements. Wavelet Transform has become a useful tool for the analysis of the variations in time series. In this study, a hybrid model, Wavelet-Neuro Fuzzy (WNF), has been used to forecast the streamflow data of 5 Flow Observation Stations (FOS), which belong to Sakarya Basin in Turkey. In order to evaluate the accuracy performance of the model, Auto Regressive Integrated Moving Average (ARIMA) model has been used with the same data sets. The comparison has been made by Root Mean Squared Errors (RMSE) of the models. Results showed that hybrid WNF model forecasts the streamflow more accurately than ARIMA model.  相似文献   

3.
Chu  Haibo  Wei  Jiahua  Jiang  Yuan 《Water Resources Management》2021,35(8):2617-2632

Middle-term and long-term streamflow forecasting is of great significance for water resources planning and management, cascade reservoirs optimal operation, agriculture and hydro-power generation. In this work, a framework was proposed which integrates least absolute shrinkage and selection operator (lasso), DBN and bootstrap to improve the performance and the stability of streamflow forecasting with the lead-time of one month. Lasso helps to screen the appropriate predictors for the DBN model, and the DBN model simulates the complex relationship between the selection predictors and streamflow, and then bootstrap with the DBN model contributes to evaluate the uncertainty. The Three-River Headwaters Region (TRHR) was taken as a case study. The results indicated that lasso-DBN-bootstrap model produced significantly more accurate forecasting results than the other three models and provides reliable information on the forecasting uncertainty, which will be valuable for water resources management and planning.

  相似文献   

4.
Shu  Xingsheng  Ding  Wei  Peng  Yong  Wang  Ziru  Wu  Jian  Li  Min 《Water Resources Management》2021,35(15):5089-5104

Monthly streamflow forecasting is vital for managing water resources. Recently, numerous studies have explored and evidenced the potential of artificial intelligence (AI) models in hydrological forecasting. In this study, the feasibility of the convolutional neural network (CNN), a deep learning method, is explored for monthly streamflow forecasting. CNN can automatically extract critical features from numerous inputs with its convolution–pooling mechanism, which is a distinct advantage compared with other AI models. Hydrological and large-scale atmospheric circulation variables, including rainfall, streamflow, and atmospheric circulation factors are used to establish models and forecast streamflow for Huanren Reservoir and Xiangjiaba Hydropower Station, China. The artificial neural network (ANN) and extreme learning machine (ELM) with inputs identified based on cross-correlation and mutual information analyses are established for comparative analyses. The performances of these models are assessed with several statistical metrics and graphical evaluation methods. The results show that CNN outperforms ANN and ELM in all statistical measures. Moreover, CNN shows better stability in forecasting accuracy.

  相似文献   

5.
Lian  Yani  Luo  Jungang  Wang  Jingmin  Zuo  Ganggang  Wei  Na 《Water Resources Management》2022,36(1):21-37
Water Resources Management - Many previous studies have developed decomposition and ensemble models to improve runoff forecasting performance. However, these decomposition-based models usually...  相似文献   

6.
Shu  Xingsheng  Peng  Yong  Ding  Wei  Wang  Ziru  Wu  Jian 《Water Resources Management》2022,36(11):3949-3964
Water Resources Management - Many hydrological applications related to water resource planning and management primarily rely on a succession of streamflow forecasts with extensive lead times. In...  相似文献   

7.
Water Resources Management - The issue of predicting monthly streamflow data is an important issue in water resources engineering. In this paper, a hybrid model was proposed to generate monthly...  相似文献   

8.
Intermittent Streamflow Forecasting by Using Several Data Driven Techniques   总被引:4,自引:4,他引:4  
Forecasting intermittent streamflows is an important issue for water quality management, water supplies, hydropower and irrigation systems. This paper compares the accuracy of several data driven techniques, that is, adaptive neuro fuzzy inference system (ANFIS), artificial neural networks (ANNs) and support vector machine (SVM) for forecasting daily intermittent streamflows. The results are also compared with those of the local linear regression (LLR) and the dynamic local linear regression (DLLR). Intermittent streamflow data from two stations, Uzunkopru and Babaeski, in Thrace region located in north-western Turkey are used in the study. The root mean square error and correlation coefficient were used as comparison criteria. The comparison results indicated that the ANFIS, ANN and SVM models performed better than the LLR and DLLR models in forecasting daily intermittent streamflows. The ANN and ANFIS gave the best forecasts for the Uzunkopru and Babaeski stations, respectively.  相似文献   

9.
Meng  Erhao  Huang  Shengzhi  Huang  Qiang  Fang  Wei  Wang  Hao  Leng  Guoyong  Wang  Lu  Liang  Hao 《Water Resources Management》2021,35(4):1321-1337

Some previous studies have proved that prediction models using traditional overall decomposition sampling (ODS) strategy are unreasonable because the subseries obtained by the ODS strategy contain future information to be predicted. It is, therefore, necessary to put forward a new sampling strategy to fix this defect and also to improve the accuracy and reliability of decomposition-based models. In this paper, a stepwise decomposition sampling (SDS) strategy according to the practical prediction process is introduced. Moreover, an innovative input selection framework is proposed to build a strong decomposition-based monthly streamflow prediction model, in which sunspots and atmospheric circulation anomaly factors are employed as candidate input variables to enhance the prediction accuracy of monthly streamflow in addition to regular inputs such as precipitation and evaporation. Meanwhile, the partial correlation algorithm is employed to select optimal input variables from candidate input variables including precipitation, evaporation, sunspots, and atmospheric circulation anomaly factors. Four basins of the U.S. MOPEX project with various climate characteristics were selected as a case study. Results indicate that: (1) adding teleconnection factors into candidate input variables helps enhance the prediction accuracy of the support vector machine (SVM) model in predicting streamflow; (2) the innovative input selection framework helps to improve the prediction capacity of models whose candidate input variables interact with each other compared with traditional selection strategy; (3) the SDS strategy can effectively prevent future information from being included into input variables, which is an appropriate substitute of the ODS strategy in developing prediction models; (4) as for monthly streamflow, the hybrid variable model decomposition-support vector machine (VMD-SVM) models, using an innovative input selection framework and the SDS strategy, perform better than those which have not adopted this framework in all study areas. Generally, the findings of this study showed that the hybrid VMD-SVM model combining the SDS strategy and innovative input selection framework is a useful and powerful tool for practical hydrological prediction work in the context of climate change.

  相似文献   

10.
In this study, a new hybrid model integrated adaptive neuro fuzzy inference system with Firefly Optimization algorithm (ANFIS-FFA), is proposed for forecasting monthly rainfall with one-month lead time. The proposed ANFIS-FFA model is compared with standard ANFIS model, achieved using predictor-predictand data from the Pahang river catchment located in the Malaysian Peninsular. To develop the predictive models, a total of fifteen years of data were selected, split into nine years for training and six years for testing the accuracy of the proposed ANFIS-FFA model. To attain optimal models, several input combinations of antecedents’ rainfall data were used as predictor variables with sixteen different model combination considered for rainfall prediction. The performances of ANFIS-FFA models were evaluated using five statistical indices: the coefficient of determination (R 2 ), Nash-Sutcliffe efficiency (NSE), Willmott’s Index (WI), root mean square error (RMSE) and mean absolute error (MAE). The results attained show that, the ANFIS-FFA model performed better than the standard ANFIS model, with high values of R 2 , NSE and WI and low values of RMSE and MAE. In test phase, the monthly rainfall predictions using ANFIS-FFA yielded R 2 , NSE and WI of about 0.999, 0.998 and 0.999, respectively, while the RMSE and MAE values were found to be about 0.272 mm and 0.133 mm, respectively. It was also evident that the performances of the ANFIS-FFA and ANFIS models were very much governed by the input data size where the ANFIS-FFA model resulted in an increase in the value of R 2 , NSE and WI from 0.463, 0.207 and 0.548, using only one antecedent month of data as an input (t-1), to almost 0.999, 0.998 and 0.999, respectively, using five antecedent months of predictor data (t-1, t-2, t-3, t-6, t-12, t-24). We ascertain that the ANFIS-FFA is a prudent modelling approach that could be adopted for the simulation of monthly rainfall in the present study region.  相似文献   

11.
Jiang  Yan  Bao  Xin  Hao  Shaonan  Zhao  Hongtao  Li  Xuyong  Wu  Xianing 《Water Resources Management》2020,34(11):3515-3531

We have developed a hybrid model that integrates chaos theory and an extreme learning machine with optimal parameters selected using an improved particle swarm optimization (ELM-IPSO) for monthly runoff analysis and prediction. Monthly streamflow data covering a period of 55 years from Daiying hydrological station in the Chaohe River basin in northern China were used for the study. The Lyapunov exponent, the correlation dimension method, and the nonlinear prediction method were used to characterize the streamflow data. With the time series of the reconstructed phase space matrix as input variables, an improved particle swarm optimization was used to improve the performance of the extreme learning machine. Finally, the optimal chaotic ensemble learning model for monthly streamflow prediction was obtained. The accuracy of the predictions of the streamflow series (linear correlation coefficient of about 0.89 and efficiency coefficient of about 0.78) indicate the validity of our approach for predicting streamflow dynamics. The developed method had a higher prediction accuracy compared with an auto-regression method, an artificial neural network, an extreme learning machine with genetic algorithm and with PSO algorithm, suggesting that ELM-IPSO is an efficient method for monthly streamflow prediction.

  相似文献   

12.
Wang  Wen-chuan  Du  Yu-jin  Chau  Kwok-wing  Xu  Dong-mei  Liu  Chang-jun  Ma  Qiang 《Water Resources Management》2021,35(14):4695-4726

Accurate and consistent annual runoff prediction in a region is a hot topic in management, optimization, and monitoring of water resources. A novel prediction model (ESMD-SE-WPD-LSTM) is presented in this study. Firstly, extreme-point symmetric mode decomposition (ESMD) is used to produce several intrinsic mode functions (IMF) and a residual (Res) by decomposing the original runoff series. Secondly, sample entropy (SE) method is employed to measure the complexity of each IMF. Thirdly, wavelet packet decomposition (WPD) is adopted to further decompose the IMF with the maximum SE into several appropriate components. Then long short-term memory (LSTM) model, a deep learning algorithm based recurrent approach, is employed to predict all components. Finally, forecasting results of all components are aggregated to generate the final prediction. The proposed model, which is applied to seven annual series from different areas in China, is evaluated based on four evaluation indexes (R, MAE, MAPE and RMSE). Results indicate that ESMD-SE-WPD-LSTM outperforms other benchmark models in terms of four evaluation indexes. Hence the proposed model can provide higher accuracy and consistency for annual runoff prediction, rendering it an efficient instrument for scientific management and planning of water resources.

  相似文献   

13.
Bai  Yun  Bezak  Nejc  Zeng  Bo  Li  Chuan  Sapač  Klaudija  Zhang  Jin 《Water Resources Management》2021,35(4):1167-1181
Water Resources Management - Accurate forecasts of daily runoff are essential for facilitating efficient resource planning and management of a hydrological system. In practice, daily runoff is...  相似文献   

14.
Lian  Yani  Luo  Jungang  Xue  Wei  Zuo  Ganggang  Zhang  Shangyao 《Water Resources Management》2022,36(5):1661-1678

Reasonable runoff forecasting is the foundation of water resource management. However, the impact of environmental change on streamflow was not fully revealed due to the lack of enough streamflow features in many previous studies. In contrast, too many features also could lead cause undesired problems, including unstable model, interpretation difficulty, overfitting, high computational complexity, and high memory complexity. To address the above problems, this study proposes a cause-driven runoff forecasting framework based on linear-correlated reconstruction and machine learning model and refers to this framework as CSLM. We use variance inflation factor (VIF), pairwise linear correlation (PLC) reconstruction, and long short-term memory (LSTM) to realize this framework, referred to as VIF-PLC-LSTM. Four experiments were conducted to demonstrate the accuracy and efficiency of the proposed framework and its VIF-PLC-LSTM realization. Four experiments compare 1) different filter thresholds of driving factors, 2) different combination prediction features, 3) different reconstruction methods of linear-correlated features, and 4) different CSLM models. Experimental results on daily streamflow data from the Tangnaihai station at the Yellow River source and the Yangxian station at the Han River show that 1) data filtering has the risk of feature information loss, 2) when the streamflow, ERA5L, and meteorology data are used as inputs at the same time, the performance of the model is superior to the combination of other prediction features; the prediction effect of different prediction features, 3) the reconstruction of linear-correlated features is not only better than dimension reduction but also can improve the forecasting performance for streamflow prediction, and 4) among different CSLM models, LSTM is superior to other models.

  相似文献   

15.
Water Resources Management - Watershed is the basic unit for studying different hydrologic processes. Flow forecasting in a watershed is dependent upon the rainfall. The effect of erroneous...  相似文献   

16.
中长期水文预报由于影响因素复杂和目前科学水平的限制,还处于探索、发展阶段,预报手段仍以成因分析(物理因子相关)和数理统计方法为主。其中数理统计方法(方差分析、AR(P)模)是我们经常使用的一种重要方法。在使用数理统计方法进行中长期水文预报时,从理论上来说,给定一个预报区间比给定一个具体预报值更为合理。文章就数理统计法进行中长期水文预报如何给定估计合理预报区间进行初步探讨。  相似文献   

17.
Water Resources Management - Accurate prediction of drought indices is a useful method to reduce its undesirable consequences. In this study, the workability of newly integrated hybrid forecasting...  相似文献   

18.
He  Xinxin  Luo  Jungang  Zuo  Ganggang  Xie  Jiancang 《Water Resources Management》2019,33(4):1571-1590

Accurate and reliable runoff forecasting plays an increasingly important role in the optimal management of water resources. To improve the prediction accuracy, a hybrid model based on variational mode decomposition (VMD) and deep neural networks (DNN), referred to as VMD-DNN, is proposed to perform daily runoff forecasting. First, VMD is applied to decompose the original runoff series into multiple intrinsic mode functions (IMFs), each with a relatively local frequency range. Second, predicted models of decomposed IMFs are established by learning the deep feature values of the DNN. Finally, the ensemble forecasting result is formulated by summing the prediction sub-results of the modelled IMFs. The proposed model is demonstrated using daily runoff series data from the Zhangjiashan Hydrological Station in Jing River, China. To fully illustrate the feasibility and superiority of this approach, the VMD-DNN hybrid model was compared with EMD-DNN, EEMD-DNN, and multi-scale feature extraction -based VMD-DNN, EMD-DNN and EEMD-DNN. The results reveal that the proposed hybrid VMD-DNN model produces the best performance based on the Nash-Sutcliffe efficiency (NSE?=?0.95), root mean square error (RMSE?=?9.92) and mean absolute error (MAE?=?3.82) values. Thus the proposed hybrid VMD-DNN model is a promising new method for daily runoff forecasting.

  相似文献   

19.

Rainfall, which is one of the most important hydrologic processes, is influenced by many meteorological factors like climatic change, atmospheric temperature, and atmospheric pressure. Even though there are several stochastic and data driven hydrologic models, accurate forecasting of rainfall, especially smaller time step rainfall forecasting, still remains a challenging task. Effective modelling of rainfall is puzzling due to its inherent erratic nature. This calls for an efficient model for accurately forecasting daily rainfall. Singular Spectrum Analysis (SSA) is a time series analysis tool, which is found to be a very successful data pre-processing algorithm. SSA decomposes a given time series into a finite number of simpler and decipherable components. This study proposes integration of Singular Spectrum Analysis (SSA), Auto Regressive Integrated Moving Average (ARIMA) and Artificial Neural Network (ANN) into a hybrid model (SSA-ARIMA-ANN), which can yield reliable daily rainfall forecasts in a river catchment. In the present study, spatially averaged daily rainfall data over Koyna catchment, Maharashtra has been used. In this study SSA is proposed as a data pre-processing tool to separate stationary and non-stationary components from the rainfall data. Correlogram and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test has been used to validate the stationary and non-stationary components. In the developed hybrid model, the stationary components of rainfall data are modelled using ARIMA method and non-stationary components are modelled using ANN. The study of statistical performance of the model shows that the hybrid SSA-ARIMA-ANN model could forecast the daily rainfall of the catchment with reliable accuracy.

  相似文献   

20.
Xu  Wenxin  Chen  Jie  Zhang  Xunchang J. 《Water Resources Management》2022,36(10):3609-3625
Water Resources Management - The accurate prediction of monthly streamflow is important in sustainable water resources planning and management. There is a growing interest in the development of...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号