首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To evaluate non revenue water (NRW) and losses in water distribution networks a methodology is developed by applying “annual water balance” and “minimum night flow” analyses. In this approach the main NRW components such as leakage from reported and un-reported bursts and background leakage, with real or estimated data, enabling assessment of indices of leakage performance are evaluated. Also, a novel procedure is introduced in this paper that can determine the nodal and pipe leakage by using a hydraulic simulation model. Recognising the pressure dependency of leakage the total consumption is divided into two parts, one pressure dependent and the other independent of local pressure, and the hydraulic behaviour of the network is analyzed. A computer code is developed to evaluate all components of water losses based on the proposed methodology. For better representation of the results and management of the system, the outputs are exported to a GIS model. Using the capabilities of this GIS model, the network map and attribute data are linked and factors affecting network leakage are identified. In addition, the effects of pressure reduction are investigated. The model is illustrated by a real case study. The results show that the suggested model has overcome the shortcomings of the existing methodologies by accounting for the leakage and other NRW components in water distribution networks more realistically.  相似文献   

2.
Evolutionary algorithms are used widely in optimization studies on water distribution networks. The optimization algorithms use simulation models that analyse the networks under various operating conditions. The solution process typically involves cost minimization along with reliability constraints that ensure reasonably satisfactory performance under abnormal operating conditions also. Flow entropy has been employed previously as a surrogate reliability measure. While a body of work exists for a single operating condition under steady state conditions, the effectiveness of flow entropy for systems with multiple operating conditions has received very little attention. This paper describes a multi-objective genetic algorithm that maximizes the flow entropy under multiple operating conditions for any given network. The new methodology proposed is consistent with the maximum entropy formalism that requires active consideration of all the relevant information. Furthermore, an alternative but equivalent flow entropy model that emphasizes the relative uniformity of the nodal demands is described. The flow entropy of water distribution networks under multiple operating conditions is discussed with reference to the joint entropy of multiple probability spaces, which provides the theoretical foundation for the optimization methodology proposed. Besides the rationale, results are included that show that the most robust or failure-tolerant solutions are achieved by maximizing the sum of the entropies.  相似文献   

3.
Xie  Xiang  Hou  Dibo  Tang  Xiaoyu  Zhang  Hongjian 《Water Resources Management》2019,33(3):1233-1247

Leakages in water distribution networks have caused considerable waste of water resources. Thus, this study proposes a novel method for hydraulically monitoring and identifying regions where leakages occur in near-real time. A large network is first divided into several identification regions. To exploit a strong constructive and discriminative power, sparse coding is used, thereby adaptively coding the information embedded in observed pressures efficiently and succinctly. And a linear classifier is trained to determine the most likely leakage regions. A benchmark case is presented in this study to demonstrate the effectiveness of the proposed method. Results indicate that the proposed method can identify leakage events with enhanced tolerance capability for measurement errors. The method is also partially effective for identifying two simultaneous leakages. Certain practical advice in balancing the number of sensors and regions is also discussed to enhance the application potential of this method.

  相似文献   

4.
To analyze water distribution networks under pressure-deficient conditions, most of the available hydraulic simulators, including EPANET 2, must be either modified by embedding pressure-dependent demands in the governing network equations or run repeatedly with successive adjustments made to specific parameters until a sufficient hydraulic consistency is obtained. This paper presents and discusses a simple technique that implements the square root relationship between the nodal demand and the nodal pressure using EPANET 2 tools and allows a water distribution network with pressure-dependent demands to be solved in a single run of the unmodified snapshot hydraulic analysis engine of EPANET 2. In this technique, artificial strings made up of a flow control valve, a pipe with a check valve, and a reservoir are connected to the demand nodes before running the engine, and the pressure-dependent demands are determined as the flows in the strings. The resistance of the artificial pipes is chosen such that the demands are satisfied in full at a desired nodal pressure. The proposed technique shows reasonable convergence as evidenced by its testing on example networks.  相似文献   

5.
Water distribution networks are high energy and low efficiency systems, where water pressure is frequently reduced by dissipation valves to limit leakage. The dissipation produced by the valves can be converted to energy production to increase the efficiency and reduce the energy impact of networks. If valves are replaced by turbines or pumps as turbines (PATs), they can both reduce pressure and produce energy. This study focuses on the optimal location of PATs within a water distribution network in order to both produce energy and reduce leakage. A new optimization model is developed consisting of several linear and non-linear constraints and a newly proposed objective function, where the turbine installation costs as well as the energy production and the economic saving due to the reduction of leakage can be accounted all together. The case study shows that the application of the mathematical model to a synthetic network ensures better results, in terms of both energy production and water saving, in comparison to other procedures.  相似文献   

6.
Water Resources Management - Leakages in water distribution networks (WDNs), in addition to water loss, causes more problems such as water pollution and land subsidence. In this paper, a new method...  相似文献   

7.
A model to support decision systems regarding the quantification, location and opening adjustment of control valves in a network system, with the main objective to minimise pressures and consequently leakage levels is developed. This research work aims at a solution that allows simultaneously optimising the number of valves and its location, as well as valves opening adjustments for simulation in an extended period, dependently of the system characteristics. EPANET model is used for hydraulic network analysis and two operational models are developed based on the Genetic Algorithm optimisation method for pressure control, and consequently leakage reduction, since a leak is a pressure dependent function. In these two modules, this method has guaranteed an adequate technique performance, which demands a global evaluation of the system for different scenarios. A case study is presented to show the efficiency of the system by pressure control through valves management.  相似文献   

8.
A technique for leakage reduction is pressure management, which considers the direct relationship between leakage and pressure. To control the hydraulic pressure in a water distribution system, water levels in the storage tanks should be maintained as much as the variations in the water demand allows. The problem is bounded by minimum and maximum allowable pressure at the demand nodes. In this study, a Genetic Algorithm (GA) based optimization model is used to develop the optimal hourly water level variations in a storage tank in different seasons in order to minimize the leakage level. Resiliency and failure indices of the system have been considered as constraints in the optimization model to achieve the minimum required performance. In the proposed model, the results of a water distribution simulation model are used to train an Artificial Neural Network (ANN) model. Outputs of the ANN model as a hydraulic pressure function is then linked to a GA based optimization model to simulate hydraulic pressure and leakage at each node of the water distribution network based on the water level in the storage tank, water consumption and elevation of each node. The proposed model is applied for pressure management of a major pressure zone with an integrated storage facility in the northwest part of Tehran Metropolitan area. The results show that network leakage can be reduced more than 30% during a year when tank water level is optimized by the proposed model.  相似文献   

9.
There are three methods for analysing the flow and pressure distribution in looped water supply networks (the loop method, the node method, the pipe method), accounting for the chosen unknown hydraulic parameters. For all of these methods, the nonlinear system of equations can be solved using iterative procedures (Hardy–Cross, Newton–Raphson, linear theory). In the cases of the extension or the rehabilitation of distribution networks, the unknown parameters are the hydraulic heads at nodes, and the nodal method for network analysis is preferred. In this paper, a generalised classic model is developed for the nodal analysis of complex looped systems with non-standard network components and the solvability of new problems, along with the determination of the pressure state in the system. In addition, this paper exhibits a different approach to this problem by using the variational formulation method for the development of a new analysis model based on unconditioned optimisation techniques. This model has the advantage of using a specialised optimisation algorithm, which directly minimises an objective multivariable function without constraints, implemented in a computer program. The two proposed models are compared with the classic Hardy–Cross method, and the results indicated a good performance of these models. Finally, a study is performed regarding the implications of the long-term operation of the pipe network on energy consumption using these models. The new models can serve as guidelines to supplement existing procedures of network analysis.  相似文献   

10.
In the last three decades, many researchers have proposed different models for water distribution network (WDN) hydraulic analysis by head-driven analysis (HDA). By considering a pressure-discharge relationship (PDR), head-driven analysis (HDA) can avoid deviation caused by traditional demand-driven analysis (DDA) under abnormal conditions. Generally, there are three types of HDA models: 1) models achieved by embedding a PDR into DDA, 2) models using EPANET structures such as emitter or tank to take place of PDR, 3) models aiming at modifying nodal outflows to satisfy PDR based on EPANET. Among these models, modifying nodal outflows is flexible to simulate network with different PDRs and specify parameters related to PDR. Most of the models use iterative algorithms to solve HDA problems; however, present ways to ensure convergence of models are still inadequate. The purpose of this paper is to present a new way to meet the iterative convergence when modifying nodal outflows based on PDR and leakage. This new methodology has been incorporated into the hydraulic network solver EPANET and is formalized algorithmically as EPANET-IMNO. Then two typical networks are used to test EPANET-IMNO, and the results demonstrate that EPANET-IMNO can converge well and applied successfully both in static simulation and extended period simulation. Different pressure deficiency conditions are tested to further confirm the flexibility and the convergence of EPANET-IMNO. Furthermore, quality analysis results back that pressure reduction can be a practical way in contamination accident response.  相似文献   

11.
This paper proposes a new storage allocation rule based on target storage curves. Joint operating rules are also proposed to solve the operation problems of a multi-reservoir system with joint demands and water transfer-supply projects. The joint operating rules include a water diversion rule to determine the amount of diverted water in a period, a hedging rule based on an aggregated reservoir to determine the total release from the system, and a storage allocation rule to specify the release from each reservoir. A simulation-optimization model was established to optimize the key points of the water diversion curves, the hedging rule curves, and the target storage curves using the improved particle swarm optimization (IPSO) algorithm. The multi-reservoir water supply system located in Liaoning Province, China, including a water transfer-supply project, was employed as a case study to verify the effectiveness of the proposed join operating rules and target storage curves. The results indicate that the proposed operating rules are suitable for the complex system. The storage allocation rule based on target storage curves shows an improved performance with regard to system storage distribution.  相似文献   

12.
In water supply systems there are many situations during normal operation that induce the occurrence of pressure transients, where high pressures are followed by low, sometimes even negative pressures. These transients may cause ruptures in pipes creating thus leaks or opportunities for contaminants to enter the water supply system. Thus severe pressures transients should be avoided or adequately controlled in potable drinking systems. The level of service provided by water distribution systems is an important matter in the water industry of today. However, the measure of the performance of a pipe system network is not a straightforward task. In this study the performance of pressures in two networks (a cast iron network and a polyethylene network) with the same typology was compared. The transient state conditions were induced by different typical hydromechanical devices operation characterised by a sudden pumps trip-off, a leakage occurrence and a closure of an automatic control valve. For the hydraulic simulations, advanced models based on numerical computation for steady and transient state conditions were used. A performance evaluation model was developed to analyse each type of situation since the simulation time period and the concerns regarding the system behaviour can be fairly different.  相似文献   

13.
基于供水管网水力计算理论,建立了以渗漏强度对管线压力的主要影响因素的渗漏状态下管道水力计算模型。应用该模型,可以得到正常与渗漏两种状态下的压力差值的数学表达式与其变化规律,据此可根据压力变化判据渗漏和进行定位。通过模拟计算,介绍了压力变化作为渗漏发生有效判据和初步定位的方法。  相似文献   

14.
Pressure management is one of the most significant water demand management methods to reduce leakage in water distribution networks. Leak as an adverse event is directly related to the pressure. Therefore, reducing extra network pressure decreases leakage in water distribution networks. The pressure reducing valves have some disadvantage. For example, they break down quickly. Therefore, in this study, a novel system named Pressure Reducing Flexible Storage (PRFS) was introduced that hasn’t these disadvantages and it could consider a good alternative for pressure reducing valves in water distribution networks. In this system, a spherical tank containing a flexible rubber cover was installed at the network node. By increasing the pressure in the conjunction, the foam was compressed and reduced the pressure. In this study, the presented system was simultaneously modeled by using Flow-3D and ABAQUS softwares, and pressure decrement was estimated in the conjunction. The results show that the proposed system can decrease the pressure in the conjunctions of water distribution network by about 18%. Therefore, it could be considered as a good alternative for pressure reducing valves in water distribution networks.  相似文献   

15.
Pressure management through Pressure Reducing Valves (PRVs) is probably the most used approach related to the leakage management in Water Distribution Networks (WDNs). Its effectiveness in reducing the amount of water losses in existing networks has been highlighted in many papers. In this study, the topic is addressed with particular reference to meta-heuristic optimization techniques, that have proved to be very effective in producing good results with reduced use of computational resources. In particular, the application of the Harmony-Search (HS) method to the location and setting of a pre-fixed number of PRVs is proposed and discussed. A single objective optimization problem is defined which aims at the leakage reduction through the minimization of the water pressures. A double harmonic component is adopted for taking into account both the location and the setting of each PRV. The hydraulic constraints handled by a simulation software are considered as well. The approach is applied to a couple of WDNs: one is the Jowitt and Xu well-known literature test case and the other is a real WDN in Naples, called Napoli Est. The methodology has showed very good results compared to those obtained by using classical Genetic Algorithm techniques both in terms of leakage reduction and computation time.  相似文献   

16.
The water distribution system (WDS) rehabilitation problem is defined here as a multi-objective optimisation problem under uncertainty. Two alternative problem formulations are considered. The first objective in both approaches is to minimise the total rehabilitation cost. The second objective is to either maximise the overall WDS robustness or to minimise the total WDS risk. The WDS robustness is defined as the probability of simultaneously satisfying minimum pressure head constraints at all nodes in the network. Total risk is defined as the sum of nodal risks, where nodal risk is defined as the product of the probability of pressure failure at that node and consequence of such failure. Decision variables are the alternative rehabilitation options for each pipe in the network. The only source of uncertainty is the future water consumption. Uncertain demands are modelled using any probability density functions (PDFs) assigned in the problem formulation phase. The corresponding PDFs of the analysed nodal heads are calculated using the Latin Hypercube sampling technique. The optimal rehabilitation problem is solved using the newly developed rNSGAII method which is a modification of the well-known NSGAII optimisation algorithm. In rNSGAII a small number of demand samples are used for each fitness evaluation leading to significant computational savings when compared to the full sampling approach. The two alternative approaches are tested, verified and their performance compared on the New York tunnels case study. The results obtained demonstrate that both new methodologies are capable of identifying the robust (near) Pareto optimal fronts while making significant computational savings.  相似文献   

17.
In water distribution systems (WDSs), the available flow at a demand node is dependent on the pressure at that node. When a network is lacking in pressure, not all consumer demands will be met in full. In this context, the assumption that all demands are fully satisfied regardless of the pressure in the system becomes unreasonable and represents the main limitation of the conventional demand driven analysis (DDA) approach to WDS modelling. A realistic depiction of the network performance can only be attained by considering demands to be pressure dependent. This paper presents an extension of the renowned DDA based hydraulic simulator EPANET 2 to incorporate pressure-dependent demands. This extension is termed “EPANET-PDX” (pressure-dependent extension) herein. The utilization of a continuous nodal pressure-flow function coupled with a line search and backtracking procedure greatly enhance the algorithm’s convergence rate and robustness. Simulations of real life networks consisting of multiple sources, pipes, valves and pumps were successfully executed and results are presented herein. Excellent modelling performance was achieved for analysing both normal and pressure deficient conditions of the WDSs. Detailed computational efficiency results of EPANET-PDX with reference to EPANET 2 are included as well.  相似文献   

18.
Water distribution networks are vulnerable to various contamination events that may be accidental or purposeful. Sensors are required for online monitoring of water quality to safeguard human health. Since sensors are costly, their numbers must be limited that makes sensor locations crucial in the water monitoring system. This paper aims at location of sensors in intermittent water distribution system which are more prone to accidental contamination due to contaminants ingress into the pipe lines because of low pressures during non supply hours. Considering deployment of limited number of sensors, the novelty of the paper is to propose a methodology for selection of contamination events with associated risk to be used in design of sensor network. Integrated risk assessment model is used to identify risk prone areas that may lead to possible contamination events. A Genetic Algorithm based methodology is suggested for optimal location of water quality sensors to maximize the detection likelihood of the contamination events within the acceptable time from the risk prone areas to improve network security. A comparison of sensor network design is made by considering contamination events occurring with: (i) equal probability at all the nodes; (ii) equal probability at risk prone nodes; and (iii) probability of occurrences based on quantified risk, to show that identification of risk prone areas and selection of contamination events results in reduction of computational work and more sensible placement of sensors.  相似文献   

19.
Effect of Breakage Level One in Design of Water Distribution Networks   总被引:6,自引:6,他引:0  
Design of water distribution networks (WDNs) that do not consider performance criteria would possibly lead to less cost but it could also decrease water pressure reliability in abnormal conditions such as a breakage of pipes of the network. Thus, awareness of the situation of consumption nodes, by considering water pressures and the amount of water that is being supplied, could be an effective source of information for designing high performance WDNs. In this paper, Two-loop and Hanoi networks are selected for least-cost design, considering water pressures and the amount of water supplied on each consumption node under breakage level one, using the honey-bee mating optimization (HBMO) algorithm. In each state of design, a specific pressure is defined as the minimum expected pressure under breakage level one which holds the pressure reliability in the considered range. Also, variations of some criteria such as reliabilities of pressure and demand, vulnerability of the network, and flexibility of the design are analyzed as a tool for choosing the appropriate state of design. Results show that a minor increase in the cost of design could lead to a considerable improvement in reliabilities of pressure and demand under breakage level one.  相似文献   

20.
分析了测压点优化布置的意义及原则,并根据供水周期性,依靠数量有限的测压点压力数据,结合管网的水力计算,利用传统的平差原理,将测压点以外的其它节点压力进行真实性校正,推算出了管网各节点的真实压力值,实现了通过有限测压点数据对管网所有节点压力的全面了解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号