首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
作物需水量与灌溉制度模拟   总被引:14,自引:0,他引:14  
从作物需水量的基本概念出发,以水量平衡原理为基础,建立了模拟农田根层土壤水循环的计算机模型-ISAREG.这一模型具有多种功能,可模拟根层土壤水分变化,评价给定的灌溉制度,计算作物需水量和灌溉需水量,也可用以制订多种供水限制条件下的优化灌溉制度.用望都灌溉试验站的小麦、玉米、棉花3种作物两年的试验观测资料对上述模型进行了验证.  相似文献   

2.
曹丹  易秀  陈小兵 《水资源保护》2022,38(2):154-159
为优化黄河三角洲作物结构,以东营市垦利区为例,计算了当地主要作物各生育阶段及整个生育期内的作物需水量、有效降水量以及淋洗需水量,并对不同作物的水分盈亏情况进行了分析。结果表明:作物补充灌溉需水量从小到大依次为玉米、棉花、小麦、水稻;玉米水分亏缺程度最低,应适当增加玉米种植面积或者把冬小麦、夏玉米轮作更换为一年种植两季玉米(春玉米和夏玉米);减少棉花在中、轻度盐碱地的种植面积,对耐盐性较好的棉花改用排水回用或微咸水灌溉;兼用灌溉用水和洗盐用水种植水稻,在经水稻种植改良成轻度盐碱地的土壤上种植玉米和小麦。  相似文献   

3.
During recent years, the international attention paid to rational use and saving of water has increased, partly because of frequent water shortages occurring also in countries not usually involved in these problems, and partly as a consequence of rising conflicts on water allocation. Hence it is important to find new surface-water volumes satisfying agricultural water demand, as well as new ways and areas to store them. The simulation model presented by the paper enables evaluation, in a phase of design feasibility analysis, of whether a flood detention pond can be adapted to act as water storage during irrigation periods in order to reduce agricultural water shortages; it simulates detention pond response to floods and droughts under different hydraulic conditions and reservoir management rules. The first policy goal of the model is to maintain the stored volume within the maximum admissible for flood safety. The second goal is to maintain at the same time a minimum flow in the river and to satisfy irrigation water demand. The model, implemented in a purpose-made simulation software, was applied to an Italian river in the Emilia Romagna region: the results demonstrate that the use of a flood detention pond as an irrigation reservoir is not only possible, if it complies with the operating rules that emerge from this study, but also it brings tangible benefits in reducing agricultural water deficit.  相似文献   

4.
To meet the anticipated increase in global demand for food and fibre products, large areas of land around the world are being cleared and infrastructure constructed to enable irrigation, referred to herein as ‘greenfield irrigation’. One of the challenges in assessing the profitability of a greenfield irrigation development is understanding the impact of variability in climate and water availability and the trade-offs with scheme size, cost and the sensitivity of crop yield to water stress. For example, is it more profitable to irrigate a small area of land most years or a large area once every few years? And, is it more profitable to partially or fully water the crop? This paper presents a new method for efficiently linking a river system model and an agricultural production model to explore the financial trade-offs of different management choices, thereby enabling the optimal scheme area and most appropriate level of farmer risk to be identified. The method is demonstrated for a hypothetical but plausible greenfield irrigation development based around a large dam in the Flinders catchment, northern Australia. It was found that a dam and irrigation development paid for and operated by the same entity is not, under the conditions examined in this analysis, economically sustainable. The method could also be used to explore the impact of different management strategies on the agricultural production and profitability of existing irrigation schemes within a whole of river system context.  相似文献   

5.
Here we have developed a new model to simulate supplemental irrigation and the hydro-economic potential of a rainwater harvesting system in rainfed agricultural areas. Using the model, soil moisture in rainfed crop land, supplemental irrigation requirements, rainwater storage in an on-farm reservoir (OFR) system, and surface and ground water availability were predicted. In an irrigated system, an OFR was used to harvest rainwater during the rainy season, and stored water was applied to cropland as supplemental irrigation (SI). An economic analysis was performed to calculate the benefits due to an OFR irrigation system, and gains from increased crop yield and downstream water availability in the irrigated OFR system were compared with rainfed system (i.e. no OFR). In addition, we calculated the impacts of dry and wet seasons on total value gains (grain and water gains) for irrigated and rainfed conditions and performed a sensitivity analysis to quantify the impacts of model input parameters on total value gains. Analyses showed that the OFR system can produce crop yields three times greater than rainfed agriculture. During a water stress season, the total water use in the irrigated system was 65 % greater than for the rainfed system. Water use efficiency of the irrigated system was 82 % higher than for the rainfed system. In a dry season, the total value gains due to increased crop yield by supplemental irrigation and downstream water availability of the irrigated system were 74 % greater than for the rainfed system, while in a wet season the total value gain of the irrigated system was 14 % greater than for the rainfed system. A precipitation scenario analysis of wet and dry seasons indicated that the benefits of a rainwater harvesting system can be considerably greater in dry seasons than wet seasons.  相似文献   

6.
In this study, we use an ecreage-response model to complementthe 1995 USDA/NRCS study of water demand in agriculture in theACF river basin of Georgia through the year 2020. Due to priceeffects, our results show that cotton, peanuts, vegetables andorchards receive a larger fraction of irrigation than they do inthe NRCS model, while corn receives significantly less. Inaddition, we model peanut acreage as quasi-fixed in order toreflect agricultural policies, which further increases the shareof irrigation applied to cotton, orchards, and vegetables. Wecombine our estimated model with the results of the NRCS studyto determine the implicit future prices assumed in the NRCSmodel.  相似文献   

7.
张宇亮  吴志勇  何海 《水利学报》2022,53(10):1168-1179,1193
基于模拟土壤含水量构建的干旱指数可反映农业干旱的时空发展过程,已被广泛用于大范围农业干旱评估中。当前模拟用于干旱评估的土壤含水量时,常采用水文模型进行模拟。然而,水文模型常过于简化作物模块甚至缺少作物模拟方案,无法模拟作物需水量,因此仅基于土壤含水量构建的土壤干旱指数因忽略作物需水而难以准确评估实际的农业干旱情况。研究构建了考虑灌溉过程影响的水文-作物耦合模型VIC-EPIC(Variable Infiltration Capacity-Environmental Policy Integrated Climate),提出了基于VIC-EPIC模拟作物需耗水过程的作物缺水距平指数CWAPI(Crop Water Anomaly Percentage Index),在青口河流域开展了区域农业干旱评估方法研究。验证分析表明,构建的CWAPI因考虑作物需水影响可直接反映作物的缺水状态和缺水对作物生长的累积影响;由于在干旱评估中引入了作物种植比例、轮作类型和灌溉的影响,CWAPI能够较SMAPI(Soil Moisture Anomaly Percentage Index)更客观地反映区域作物旱情。因此评估农业干旱时,需要考虑作物种植比例、轮作和灌溉过程的影响。  相似文献   

8.
Water resource management in arid agricultural irrigation regions is a great challenge for managers and decision makers. In some of those regions, many ponds have been built to ensure an adequate water supply for irrigation. Therefore, reservoirs and ponds should be managed conjunctively to minimize shortages of water. In this study, a new integrated mathematical model of conjunctive, or integrated, operation of reservoirs and ponds to maximize the water supply has been proposed for a reservoir-pond irrigation system. This objective has been achieved via the use of two models: an optimal model, which is used to determine the optimal discharge of reservoirs, and a simulation model, which considers the regulatory role of ponds and reservoirs and simulates their water supply to the irrigation system. An adaptive genetic algorithm has been employed in this study to solve the nonlinear and multi-dimensional reservoirs optimization problem. This methodology has been applied to the Yarkant River Basin to demonstrate its applicability, and three scenarios are presented. The main objective of the simulation-optimization model in the Yarkant River Basin is to minimize shortages in meeting irrigation demands for nine sub-irrigation systems subject to the constraint of ecological water transfer to the Tarim River. The optimizing effect of the model was particularly prominent under the third scenario, i.e., the XBD, MMK, and ART Reservoirs and 16 ponds conjunctively operated to meet the water demand of the YKB. The frequency of success (FS) in meeting agricultural water demands reaches up to 75%, and the value for ecological demand is 50.98%. The results demonstrate the importance of the conjunctive combined use approach for management of water resources in irrigation system of arid regions.  相似文献   

9.
针对河套灌区典型的套种模式以及地下水位较浅的情况,基于SPAC系统应用土壤水动力学理论定量分析了作物生育期内大气水、灌溉水、作物水、土壤水和地下水的相互转化关系。应用FAO推荐的Penman-Monteith法及双作物系数法,对小麦套种玉米、小麦套种向日葵模式的实际腾发量进行了计算。从动态观点出发,在时间尺度上考虑深层渗漏量和根系层储水量对作物的有效性,对灌区田间灌溉水的有效性进行了评价。结果表明:小麦套种玉米的实际腾发量为635.8 mm,小麦套种向日葵的实际腾发量为428.2 mm;小麦套种玉米灌溉水利用率为91.9%,小麦套种向日葵的灌水利用效率为88.4%。  相似文献   

10.
In arid and semi-arid countries, the use of irrigation is essential to ensure agricultural production. Irrigation water use is expected to increase in the near future due to several factors such as the growing demand of food and biofuel under a probable climate change scenario. For this reason, the improvement of irrigation water use efficiency has been one of the main drivers of the upgrading process of irrigation systems in countries like Spain, where irrigation water use is around 70 % of its total water use. Pressurized networks have replaced the obsolete open-channel distribution systems and on farm irrigation systems have been also upgraded incorporating more efficient water emitters like drippers or sprinklers. Although pressurized networks have significant energy requirements, increasing operational costs. In these circumstances farmers may be unable to afford such expense if their production is devoted to low-value crops. Thus, in this work, a new approach of sustainable management of pressurized irrigation networks has been developed using multiobjective genetic algorithms. The model establishes the optimal sectoring operation during the irrigation season that maximize farmer’s profit and minimize energy cost at the pumping station whilst satisfying water demand of crops at hydrant level taking into account the soil water balance at farm scale. This methodology has been applied to a real irrigation network in Southern Spain. The results show that it is possible to reduce energy cost and improve water use efficiency simultaneously by a comprehensive irrigation management leading, in the studied case, to energy cost savings close to 15 % without significant reduction of crop yield.  相似文献   

11.
The variability of fresh water availability in arid and semi-arid countries poses a serious challenge to farmers to cope with when depending on irrigation for crop growing. This has shifted the focus onto improving irrigation management and water productivity (WP) through controlled deficit irrigation (DI). DI can be conceived as a strategy to deal with these challenges but more knowledge on risks and chances of this strategy is urgently needed. The availability of simulation models that can reliably predict crop yield under the influence of soil, atmosphere, irrigation, and agricultural management practices is a prerequisite for deriving reliable and effective deficit irrigation strategies. In this context, this article discusses the performance of the crop models CropWat, PILOTE, Daisy, and APSIM when being part of a stochastic simulation-based approach to improve WP by focusing primarily on the impact of climate variability. The stochastic framework consists of: (i) a weather generator for simulating regional impacts of climate variability; (ii) a tailor-made evolutionary optimization algorithm for optimal irrigation scheduling with limited water supply; and (iii) the above mentioned models for simulating water transport and crop growth in a sound manner. The results present stochastic crop water production functions (SCWPFs) that can be used as basic tools for assessing the impact on the risk for the potential yield due to water stress and climate variability. Example simulations from India, Malawi, France and Oman are presented and the suitability of these crop models to be employed in a framework for optimizing WP is evaluated.  相似文献   

12.
Water demand for irrigated agriculture is increasing against limited availability of fresh water resources in the lower reaches of the Amu Darya River e.g., Khorezm region of Uzbekistan. Future scenarios predict that Khorezm region will receive fewer water supplies due to climate change, transboundary conflicts and hence farmers have to achieve their yield targets with less water. We conducted a study and used AquaCrop model to develop the optimum and deficit irrigation schedule under shallow groundwater conditions (1.0–1.2 m) in the study region. Cotton being a strategic crop in the region was used for simulations. Capillary rise substantially contributes to crop-water requirements and is the key characteristic of the regional soils. However, AquaCrop does not simulate capillary rise contribution, thereby HYDRUS-1D model was used in this study for the quantification of capillary rise contribution. Alongside optimal irrigation schedule for cotton, deficit strategies were also derived in two ways: proportional reduction from each irrigation event (scenario-A) throughout the growth period as well as reduced water supply at specific crop growth stages (scenario-B). For scenario-A, 20, 40, 50 and 60 % of optimal water was deducted from each irrigation quota whereas for scenario-B irrigation events were knocked out at different crop growth stages (stage 1(emergence), stage 2 (vegetative), stage 3 (flowering) and stage 4 (yield formation and ripening)). For scenario-A, 0, 14, 30 and 48 % of yield reduction was observed respectively. During stress at the late crop development stage, a reduced water supply of 12 % resulted in a yield increase of 8 %. Conversely, during stress at the earlier crop development stage, yield loss was 17–18 %. During water stress at the late ripening stage, no yield loss was observed. Results of this study provide guidelines for policy makers to adopt irrigation schedule depending upon availability of irrigation water.  相似文献   

13.
Maier  N.  Dietrich  J. 《Water Resources Management》2016,30(9):3285-3298

The eco-hydrological model SWAT is used worldwide for simulating hydrology and water quality of agricultural catchments. One of the main water uses is irrigation, predominantly in arid and semi-arid regions. Climate impact simulations show that a future increase of irrigation demand can be expected for humid regions. Options for adaptation include the improvement of irrigation techniques and the modification of crop patterns. In our study we investigate the application of SWAT for the development of water saving irrigation control strategies in a humid river catchment in Northern Germany. We developed different scenarios using both soil moisture deficit control and plant water demand control. The results show plausible changes of irrigation amounts when changing the trigger points of both control methods. By deficit control strategies, the water consumption could be reduced with only a moderate decrease of crop yield. Differences between soil characteristics were well shown in the SWAT simulations, but the model consistently overestimated irrigation values. Furthermore we found a high variability of the model errors between the different years, even if the long term average values are considered acceptable. Future research is needed to improve the model accuracy in automatic irrigation control.

  相似文献   

14.
Encouraging shallow groundwater use through water table management or controlled drainage in irrigated areas can relief crop water stress under water shortage condition. But substituting fresh irrigation water with saline groundwater may speed up salinity buildup in the crop root zone, and consequently increase water use for salt leaching. With a proposed analytical model, this paper presents a case study demonstrating the effect of encouraging shallow groundwater use through controlled drainage on salt and water management in a semi-arid irrigation area in northwestern China. Based on the average rainfall condition, the model assumes that salt accumulates in the crop root zone due to irrigation and shallow groundwater use; till the average soil salinity reaches the crop tolerance level, leaching irrigation is performed and the drainage outlet is lowered to discharge the salt-laden leaching water. For the relatively salt tolerant crop–cotton in the study area, the predicted leaching cycle was as long as 751 days using the fresh water (with salinity of 0.5 g/L) irrigation only; it was shortened to 268 days when the water table depth was controlled at 2 m and 23% of the crop water requirement was contributed from the saline groundwater (with salinity of 4.43 g/L). The predicted leaching cycle was 140 days when the water table depth was controlled at 1.5 m and groundwater contribution was 41% of the crop water requirement; it was shortened to 119 days when the water table depth was controlled at 1.2 m and the groundwater contribution was 67% of the crop water requirements. So the benefit from encouraged shallow groundwater use through controlled drainage is obtained at the expense of shortened leaching cycle; but the shallow groundwater use by crops consists of a significant portion of crop water requirements, and the leaching cycle remains long enough to provide a time window for scheduled leaching in the off season of irrigation. Weighing the pros and cons of the encouraged shallow groundwater use may help plan irrigation and drainage practices to achieve higher water use efficiency in saline agricultural areas.  相似文献   

15.
基于宝鸡峡灌区11个气象站30年的气象数据、20年的作物种植面积资料及灌溉水利用系数等资料,分别用彭曼公式和定额法计算宝鸡峡灌区农业需水量,利用趋势法及灰色关联分析法分析其变化特征及驱动因素,并将计算结果与实际农业用水量对比讨论。结果表明:在众多变化环境因素共同作用下,1991-2010年间宝鸡峡灌区农业需水量呈下降趋势,其主要影响因素是种植面积及粮食作物种植比的减小。中等年及干旱年实际用水量接近于非充分灌溉条件下定额法计算出的农业需水量,湿润年实际用水量介于定额法计算出的农业需水量与基于彭曼公式计算出的农业需水量之间。基于上述结论考虑灌区实际用水需求,提出灌区农业需水量合理确定方法。  相似文献   

16.
刘庆贺  康小兵 《人民长江》2020,51(2):138-141
膜下滴灌种植方式大面积在西北干旱地区推广应用,使得该区地下水得不到有效补给,地下水位出现大幅下降。水位下降使地下水对土壤水的顶托作用和潜水的蒸发作用减弱,对作物需水量产生一定影响。利用2008~2018年新疆巴音郭楞蒙古自治州国家重点灌溉试验站不同地下水位进行滴灌实验的有利条件,研究地下水位下降对干旱地区膜下滴灌棉花滴灌水量的影响,并使用Penman-Monteith公式计算地下水埋深7~8 m时膜下滴灌棉花的需水量。研究表明:地下水位下降致使干旱地区的膜下滴灌棉花高产的需水量上升;滴灌水的入渗能力具有随矿化度增加而增加的趋势,且适宜的含盐量对棉花的生长具有一定的协同作用;当地下水埋深大于6 m时,水位的进一步下降将不再促使膜下棉花的需水量进一步上升。  相似文献   

17.
The work presents the results of a comprehensive modelling study of surface and groundwater resources in the Muzza-Bassa Lodigiana irrigation district, in Northern Italy. It assesses the impact of changes in land use and irrigation water availability on the distribution of crop water consumption in space and time, as well as on the groundwater resources. A distributed, integrated surface water-groundwater simulation system was implemented and applied to the study area. The system is based on the coupling of a conceptual vadose zone model with the groundwater model MODFLOW. To assess the impact of land use and irrigation water availability on water deficit for crops as well as on groundwater system in the area, a number of management scenarios were identified and compared with a base scenario, reflecting the present conditions. Changes in land use may alter significantly both total crop water requirement and aquifer recharge. Water supply is sufficient to meet demand under present conditions and, from the crop water use viewpoint, a reduction of water availability has a positive effect on the overall irrigation system efficiency; however, evapotranspiration deficit increases, concentrated in July and August, when it may be critical for maize crops.  相似文献   

18.
Effect of Subsurface Drip Irrigation on Cotton Plantations   总被引:1,自引:0,他引:1  
During the cultivation periods of 2001 (a dry year) and 2002 (a wet one), an experimental cotton field was irrigated using a subsurface and a surface drip system. Both systems included drip-lines 17-mm in diameter, with emitters discharging 3.8 l/h and spacing 1 m. The treatments included four irrigation levels. These were equal to 120%, 100%, 80% and 60% of the net crop water requirements during each irrigation interval. For their calculation the FAO56–Penman–Monteith methodology that estimates crop evapotranspiration was utilised. From the statistical analysis of the harvested cotton plantations it has been found that during the dry year (2001) the seed cotton yields were significantly higher where the subsurface irrigation system was used and the irrigation applications met the 80% and 60% of the crop water needs. During the two experimental years the higher irrigation applications, 120% and 100% of the crop water needs, gave seed cotton yields that did not differ significantly for both systems (subsurface and surface).  相似文献   

19.
ABSTRACT

This article evaluates profitability of irrigated versus non-irrigated agricultural production of major crops (corn, cotton, wheat, soybeans, sorghum) in 2010 (a wet year) and 2011 (an exceptional drought year) in Oklahoma and Texas. It also estimates the economic value of water for agricultural production in both states to answer the question of added value generated with irrigation. Answering those questions is critical in the face of exceptional and severe droughts affecting Oklahoma and Texas in the past decade, in addition to steeply declining groundwater resources in the Ogalalla Aquifer. The results can help with designing mitigation and adaptation measures to water scarcity.  相似文献   

20.
基于作物水分生产函数下的限额灌溉制度优化研究   总被引:4,自引:0,他引:4  
通过对小麦、玉米、棉花等主要农作物的分阶段受旱试验,获得了三年的限额灌溉试验观测数据;采用非充分灌溉条件下的土壤水分运动理论分析试验数据,建立了限额灌溉条件下的作物蒸发蒸腾模型。结合试验数据分析水分亏缺对作物产量的影响,采用多元回归分析法求解水分生产函数模型参数。采用动态规划法研究了水资源不足条件下的限额灌溉制度的多阶段优化法。研究成果表明,在产量能达到充分灌溉条件下产量的90%的情况下,可节约灌溉用水40%,能为水资源极其短缺地区的农业高效用水提供有力的技术支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号