首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The further integration of optical devices will require the fabrication of waveguides for electromagnetic energy below the diffraction limit of light. We investigate the possibility of using arrays of closely spaced metal nanoparticles for this purpose. Coupling between adjacent particles sets up coupled plasmon modes that give rise to coherent propagation of energy along the array. A point dipole analysis predicts group velocities of energy transport that exceed 0.1c along straight arrays and shows that energy transmission and switching through chain networks such as corners (see Figure) and tee structures is possible at high efficiencies. Radiation losses into the far field are expected to be negligible due to the near‐field nature of the coupling, and resistive heating leads to transmission losses of about 6 dB/μm for gold and silver particles. We analyze macroscopic analogues operating in the microwave regime consisting of closely spaced metal rods by experiments and full field electrodynamic simulations. The guiding structures show a high confinement of the electromagnetic energy and allow for highly variable geometries and switching. Also, we have fabricated gold nanoparticle arrays using electron beam lithography and atomic force microscopy manipulation. These plasmon waveguides and switches could be the smallest devices with optical functionality.  相似文献   

2.
This paper presents the results of an experimental investigation into the problem of tooth-ripple losses in the laminated poles of rotating machines. The losses are measured by measuring the Poynting vector in the air-gap region of the machine between the surface of the poles and the slotted armature. Specially designed probes are used to measure the electric and magnetic fields and the signals from these probes are processed to give the required Poynting vector. This method also enables the direct measurement of the loss due to each individual harmonic under actual running conditions with all the harmonics simultaneously present. The experimental results are quite interesting in themselves and can also serve as a basis for comparing the various methods of calculating these losses. A comparison between the measured losses and those calculated on the basis of linear electromagnetic theory is also given.  相似文献   

3.
A novel fuzzy-neural system, which is referred to as a radial basis function network-based adaptive fuzzy system (RBFN-AFS), is presented, to model the switched reluctance machine (SRM) and predict the dynamic performances in an SRM drive system. First, we use an indirect method to measure the phase flux linkage of a 6/4 SRM and then use the co-energy method to calculate phase torque characteristics. Secondly, the RBFNAFS is designed to learn and train the SRM in the knowledge of the electromagnetic characteristics by using the hierarchically self-organising learning algorithm. This modelling scheme does not require any prior information about the SRM system apart from the input and output signals, and has good capability of generalisation and excellent convergent speed. Then, an RBFN-AFS current-dependent inverse flux linkage model and an RBFN-AFS torque model are used to simulate the various transient and steady-state performances of the 6/4 0.55 kW SRM. The simulation and experimental results based on a DSP drive platform are reported to show that the modelling scheme has good estimation performance under different operation conditions of the SRM.  相似文献   

4.
Because of the doubly salient structure of the switched reluctance motor (SRM) and its intentional operation in deep magnetic saturation for higher power density, its static electromagnetic characteristics are highly nonlinear functions of rotor position and phase current. This makes the accurate experimental measurement/determination of these characteristics a difficult task. This paper presents a comprehensive discussion and analysis on the different (most practiced) computer-based methods for the determination of these characteristics for a typical SRM. A digital signal processor (DSP)-based completely automated SRM drive system has been used for these studies. For all the offline computations, user-friendly MATLAB/Simulink-based models have been developed. The experimental methods, computational models, measurement results, and appropriate postmortem discussions for the determination of static flux linkage, inductance, and electromagnetic torque characteristics for an 8/6 four-phase SRM are reported.   相似文献   

5.
We consider some unique features specific to the technological process of injection of a solvent into a hydrocarbon deposit with the simultaneous effect of a high-frequency electromagnetic field. We carry out estimates of the losses of the electromagnetic field energy released in the borehole and spent for heating the solvent. It is shown that the presence of volumetric heat sources in the face zone of the borehole due to the field effect leads to intense and deep heating of the productive bed with a small temperature gradient. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 71, No. 1, pp. 161–165, January–February, 1998.  相似文献   

6.
The electric field distribution (magnitude only) near a radiating source (antenna) can be easily determined using infrared thermography. A thin screen (made of carbon fiber reinforced polymers) is placed in front of a microwave source. The electromagnetic waves impinging on the screen are partially absorbed, resulting in temperature rise of the screen. This temperature rise is monitored by an infrared camera. The temperature distribution thus observed is mapped to the electric field strength (magnitude of electric field) of the electromagnetic waves. Points on the screen where the temperature rise is low correspond to weak electromagnetic fields whereas points with high temperature rise correspond to strong electromagnetic fields. In this paper electro-thermal modelling is done so as to obtain the temperature distribution over the screen, when an electromagnetic field is incident on it. This model can conversely be used for finding electromagnetic field distributions from IR thermal images.  相似文献   

7.
An Analytical Circuit Model of Switched Reluctance Motors   总被引:1,自引:0,他引:1  
We have developed a dynamic analytical circuit model to simulate the performance of switched reluctance motors (SRMs). Our model expresses flux linkages as multiple decoupled one-argument functions, either current dependent or rotor position dependent, instead of one two-argument function dependent on both current and rotor position. We propose a novel approach for the computation of the air gap permeance at various rotor positions. By using this analytical model, the performance of a SRM can be simulated very efficiently and with improved accuracy. As an application example, we present a simulation of an 8/6 pole SRM in the system domain, and compare the results with transient finite element analysis (FEA) solutions.   相似文献   

8.
The experimental determination of the AC losses in a superconducting material or structure has been of long-standing interest to the academic community. The purposes of the current experiments are to explore the influences of the position of temperature sensor heating time and limit temperature rise on the measurement results with the calorimetric method. The optimization heating time and the limit temperature rise of this method are obtained. The present results are beneficial for the more precise measurements of the AC losses in hightemperature superconducting materials and structures.  相似文献   

9.
Fast heavy ions from the Uppsala tandem accelerator were used to irradiate various film/substrate systems such as metal/glass, metal/polymer and metal/metal. Adhesion is in some cases substantially improved by this method. Semiquantitative evaluation by the scratch method was made of the dose dependence of the improvements and also to facilitate comparison with conventional adhesion- promoting treatments. At present, no satisfactory explanation for the effects exists. Copper-coated aluminium was used to demonstrate the importance of the natural oxide layer.It is evident that intense irradiation causes a temperature rise. The film temperature was therefore monitored during irradiation using an IR thermometer. No abnormal heat effects were found although some polymers deteriorated due to the irradiation. For metals the temperature rise is less than 1 °C.  相似文献   

10.
In this paper, we report on temperature effects associated with elastic electromagnetic forming by pulsed electromagnetic fields in inhomogeneous, linear, and lossy media. In a previous paper, we discussed the electromagnetic forces associated with these pulsed electromagnetic fields. Here, we calculate the temperature rise from the equation of heat flow in an isolated object to be deformed. The temperature rise is included in the elastodynamic problem to be solved for the presence of electromagnetic forces, and as a consequence the thermoelastic field can be obtained. As an example, we calculate the thermoelastic field in a hollow cylindrical object.  相似文献   

11.
Isotactic polypropylene (iPP) and syndiotactic polypropylene (sPP) nanocomposites containing 0.1–3.5 wt.% multi-wall carbon nanotubes (MWCNTs) have been synthesized via in situ polymerization method with the use of C2- and Cs- symmetry zirconocenes activated by methylaluminoxane (MAO) in liquid propylene medium. Fracture morphology studies by SEM reveal different MWCNT dispersion efficiency in various polymer matrices, which arises from the catalytic peculiarities of the composite synthesis. Considerable Young’s modulus enhancement of iPP and sPP (25–66%) takes place even at low MWCNT loadings (below 0.5 wt.%). The obtained nanocomposites can find use as efficient electromagnetic shielding materials and microwave absorbing filters due to relatively low permittivity values and considerable dielectric losses in microwave range. Calorimetry data demonstrate that MWCNTs exert evident influence as nucleating agents causing the rise of iPP and sPP crystallization temperature. Considerable retardation effect on iPP thermal oxidative degradation has been observed: the temperature of maximal weight loss rate rises by ~52 °C upon incorporating only 1.4 wt.% MWCNTs.  相似文献   

12.
We have investigated the range of validity of the perfect electric conductor and of the standard Rytov–Leontovich impedance boundary condition models for the analysis of axisymmetric eddy-current problems. Using these models, we derived approximate expressions for the magnetic vector potential, field quantities, Joule losses, and forces for conducting spheroids placed in external nonuniform magnetic fields produced by coaxial circular turns carrying currents varying sinusoidally with time. We compared our numerical results for the magnetic field intensity at the conductor surface, power losses, and forces (for both prolate and oblate spheroidally shaped conducting objects) with the results from analytical expressions obtained by applying the exact boundary conditions. While the simpler perfect conductor model can be employed only when the electromagnetic depth of penetration is much smaller than the smallest local radius of curvature, the results obtained by using the standard surface impedance model for conducting prolate and oblate spheroids of various axial ratios are in good agreement with the exact results for skin depths of about 1/5 of the semi-minor axis for electromagnetic forces and for skin depths less than 1/20 of the semi-minor axis for Joule losses.   相似文献   

13.
We have studied electromagnetic losses of a frequency-converter-fed cage-induction motor by using a numerical machine model that includes eddy-current and hysteresis phenomena in electrical steel sheets. We used the model to solve the two-dimensional (2-D) time-harmonic field and winding equations of a cage-induction machine, utilizing a finite-element method and phasor variables. We used complex reluctivity to couple the hysteresis and eddy currents in the sheets with the 2-D analysis. The model modifies the absolute value of the reluctivity according to a one-dimensional (1-D) eddy-current solution developed in the lamination thickness. To define the argument of the reluctivity, we applied both the 1-D field solution and measured hysteresis data. We compared computations of additional electromagnetic losses in a 37-kW test machine due to the higher harmonics of a frequency-converter supply with experimental results. The agreement is found to be reasonable.   相似文献   

14.
We use a simple carbon cycle-climate model to investigate the interactions between a selection of idealized scenarios of mitigated carbon dioxide emissions, carbon dioxide removal (CDR) and solar radiation management (SRM). Two CO(2) emissions trajectories differ by a 15-year delay in the start of mitigation activity. SRM is modelled as a reduction in incoming solar radiation that fully compensates the radiative forcing due to changes in atmospheric CO(2) concentration. Two CDR scenarios remove 300 PgC by afforestation (added to vegetation and soil) or 1000 PgC by bioenergy with carbon capture and storage (removed from system). Our results show that delaying the start of mitigation activity could be very costly in terms of the CDR activity needed later to limit atmospheric CO(2) concentration (and corresponding global warming) to a given level. Avoiding a 15-year delay in the start of mitigation activity is more effective at reducing atmospheric CO(2) concentrations than all but the maximum type of CDR interventions. The effects of applying SRM and CDR together are additive, and this shows most clearly for atmospheric CO(2) concentration. SRM causes a significant reduction in atmospheric CO(2) concentration due to increased carbon storage by the terrestrial biosphere, especially soils. However, SRM has to be maintained for many centuries to avoid rapid increases in temperature and corresponding increases in atmospheric CO(2) concentration due to loss of carbon from the land.  相似文献   

15.
To reduce torque ripple in a switched reluctance motor (SRM) by current profiling, a high-performance current controller is necessary. This study presents a high-performance current controller for SRM drives. A Bspline neural network is used to model the non-linearity of the SRM and estimate back electromotive force (EMF) and incremental inductance on-line in real time. The on-line modelling scheme does not require a priori knowledge of the machine?s electromagnetic characteristics. Based on the on-line estimated parameters, a current controller with adjustable PI gains and back-EMF decoupling is implemented. The performance of the current controller has been demonstrated in simulation and experimentally using a four-phase 8/6 550 W SRM drive system.  相似文献   

16.
Spiking neuron models, which represent information in the form of spatiotemporal patterns in spike pulse trains, have attracted much attention recently in the fields of computational neuroscience and artificial neural networks. The information processing abilities of spiking neuron models have been proven superior to those of the conventional analog-type (rate-coding) neural network models. In particular, the spike response model (SRM), which simplifies the biological neuron operation from the viewpoint of spike response, is important for VLSI implementation and various applications. In the SRM, the generation of post-synaptic potentials (PSPs) is essential. The conventional CMOS devices require complicated circuits in order to realize the function of SRM neurons. In this paper, a new device structure using a MOSFET with multinanodot floating-gate arrays is proposed for the synapse component of SRM neurons. This structure can operate at room temperature, as it utilizes thermal-noise-assisted tunneling between nanodots. The structure generates PSPs by taking advantage of the delay in electron movement due to stochastic tunneling processes. The results of single-electron circuit simulation demonstrate the generation of PSPs. The proposed structure has not yet been fabricated. The aim of this paper is to propose guidelines for the development of new nanoscale devices and fabrication technology for intelligent information processing such as that achieved in the human brain.  相似文献   

17.
Solar Radiation Management (SRM) geoengineering is a proposed response to anthropogenic global warming (AGW) (National Academy of Sciences, 2015). There may be profound – even violent – disagreement on preferred temperature. SRM disruption risks dangerous temperature rise (termination shock). Concentrating on aircraft-delivered Stratospheric Aerosol Injection (SAI), we appraise threats to SRM and defense methodologies. Civil protest and minor cyberattacks are almost inevitable but are manageable (unless state-sponsored). Overt military attacks are more disruptive, but unlikely – although superpowers’ symbolic overt attacks may deter SRM. Unattributable attacks are likely, and mandate use of widely-available weapons. Risks from unsophisticated weapons are therefore higher. An extended supply chain is more vulnerable than a secure airbase – necessitating supply-chain hardening. Recommendations to improve SRM resilience include heterogeneous operations from diverse, secure, well-stocked bases (possibly ocean islands or aircraft carriers); and avoidance of single-point-of-failure risks (e.g. balloons). A distributed, civilian-operated system offers an alternative strategy. A multilateral, consensual SRM approach reduces likely attack triggers.  相似文献   

18.
The maximum rates of pressure rise of propylene-air explosions at various initial pressures and various fuel/oxygen ratios in three closed vessels (a spherical vessel with central ignition and two cylindrical vessels with central or with top ignition) are reported. It was found that in explosions of quiescent mixtures the maximum rates of pressure rise are linear functions on total initial pressure, at constant initial temperature and fuel/oxygen ratio. The slope and intercept of found correlations are greatly influenced by vessel's volume and shape and by the position of the ignition source--factors which determine the amount of heat losses from the burned gas in a closed vessel explosion. Similar data on propylene-air inert mixtures are discussed in comparison with those referring to propylene-air, revealing the influence of nature and amount of inert additive. The deflagration index KG of centrally ignited explosions was also calculated from maximum rates of pressure rise.  相似文献   

19.
We present an analytical method for the calculation of electromagnetic torque in surface permanent-magnet (PM) motors. Our method uses conformal mapping to calculate the electromagnetic torque by integrating the Maxwell stress tensor inside the air gap. It uses the radial and tangential components of the flux density in the slotted air-gap produced by the currents flowing in the three-phase armature winding. We demonstrate our analytical solution on a 7-kW four-pole surface PM motor and compare the results with finite-element solutions. We present the results for various angular spans of permanent magnets and various sizes of the slot opening to confirm the validity of the analytical approach.   相似文献   

20.
The requirements for spatial and temporal manipulation of electromagnetic fields on the nanoscale have recently resulted in an ever-increasing use of plasmonics for achieving various functionalities with superior performance to those available from conventional photonics. For these applications, ohmic losses resulting from free-electron scattering in the metal is one major limitation for the performance of plasmonic structures. In the low-frequency regime, ohmic losses can be reduced at low temperatures. In this work, we study the effect of temperature on the optical response of different plasmonic nanostructures and show that the extinction of a plasmonic nanorod metamaterial can be efficiently controlled with temperature with transmission changes by nearly a factor of 10 between room and liquid nitrogen temperatures, while temperature effects in plasmonic crystals are relatively weak (transmission changes only up to 20%). Because of the different nature of the plasmonic interactions in these types of plasmonic nanostructures, drastically differing responses (increased or decreased extinction) to temperature change were observed despite identical variations of the metal's permittivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号