首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
国内外城市排水系统的回顾与展望   总被引:2,自引:0,他引:2       下载免费PDF全文
从国外城市排水系统各个发展阶段的特点及其最新进展出发,通过对比、分析找出国内外的差距,提出一些初步想法:适当的调整政策,并加大投资,以加快发展;引入城市排水管理的新观念,全面规划,提高效益;选择污水截流加处理作为改造现存直排式合流制的主要方案;积极创造条件,修订设计规范;建立我国的城市暴雨径流过程的计算机方法。  相似文献   

2.
Highway runoff can cause a number of water quantity and quality problems. Stormwater management systems for highways have been developed based on a fast drainage for large storm situations. Non-point source pollution from highway runoff is a growing water quality concern. Stormwater quality control needs to be integrated into highway drainage design and operation to reduce the stormwater impacts on the receiving water. A continuous simulation/optimisation model for analysing integrated highway best management practices (BMPs) is presented. This model can evaluate the life cycle performance of infiltration and/or storage oriented highway BMPs. It can be directly integrated with spreadsheet optimisation tools to find the least cost options for implementing BMPs throughout a specified life cycle.  相似文献   

3.
This report describes the development of a methodology to theoretically assess the effectiveness of structural BMPs with regard to their treatment of selected stormwater pollutants (metals, polyaromatic hydrocarbons and herbicides). The result is a prioritisation, in terms of pollutant removal efficiency, of 15 different BMPs which can inform stormwater managers and other stakeholders of the best available options for the treatment of urban runoff pollutants of particular environmental concern. Regardless of the selected pollutant, infiltration basins and sub-surface flow constructed wetlands are predicted to perform most efficiently with lagoons, porous asphalt and sedimentation tanks being the least effective systems for the removal of pollutants. The limitations of the approach in terms of the variabilities in BMP designs and applications are considered.  相似文献   

4.
城市雨洪控制利用措施与城市发展及基础设施建设的不协调,导致城市化过程中水环境退化,产生严重的水涝、径流污染、地下水位下降等城市水环境和生态问题.道路作为城市的主要下垫面和重要的排水通道,雨水问题十分突出.针对我国传统道路排水的主要问题,总结国内外道路雨洪控制利用新思路——基于LID/GSI的绿色道路,结合我国研究现状,提出我国城市道路雨洪控制利用策略,并以杭州余杭塘立交为例,分析道路雨洪控制利用措施的应用.  相似文献   

5.
GIS在城市暴雨雨水管理系统建设中的应用   总被引:1,自引:0,他引:1  
城市暴雨雨水管理系统对城市的生产、生活具有十分重要的意义。结构和功能合理的城市暴雨雨水管理系统对提高管理效率、降低决策中的人为失误、减少城市暴雨雨水的影响有着重要作用。本文介绍了在GIS技术的支持下,结合某城市暴雨雨水管理系统的结构和功能设计,利用GIS进行空间数据处理和分析,实现在管理系统中图形和数据的有机结合,提高城市暴雨雨水管理的效率和科学性。  相似文献   

6.
One of the most important causes for poor water quality in urban rivers in Brazil is the low collection efficiency of the sewer system due to unforeseen interconnections with the stormwater drainage system. Since the beginning of the 20th century, Brazilian cities have adopted separate systems for sanitary sewers and stormwater runoff. Gradually these two systems became interconnected. A major challenge faced today by water managers in Brazil is to find efficient and low cost solutions to deal with this mixed system. The current situation poses an important threat to the improvement of the water quality in urban rivers and lakes. This article presents an evaluation of the water quality parameters and the diffuse pollution loads during rain events in the Pinheiros River, a tributary of the Tietê River in S?o Paulo. It also presents different types of integrated solutions for reducing the pollution impact of combined systems, based on the European experience in urban water management. An evaluation of their performance and a comparison with the separate system used in most Brazilian cities is also presented. The study is based on an extensive water quality monitoring program that was developed for a special investigation in the Pinheiros River and lasted 2.5 years. Samples were collected on a daily basis and water quality variables were analyzed on a daily, weekly or monthly basis. Two hundred water quality variables were monitored at 53 sampling points. During rain events, additional monitoring was carried out using an automated sampler. Pinheiros River is one of the most important rivers in the S?o Paulo Metropolitan Region and it is also a heavily polluted one.  相似文献   

7.
On-site stormwater detention(OSD) is a conventional component of urban drainage systems, designed with the intention of mitigating the increase to peak discharge of stormwater runoff that inevitably results from urbanization. In Australia, singular temporal patterns for design storms have governed the inputs of hydrograph generation and in turn the design process of OSD for the last three decades. This paper raises the concern that many existing OSD systems designed using the singular temporal pattern for design storms may not be achieving their stated objectives when they are assessed against a variety of alternative temporal patterns. The performance of twenty real OSD systems was investigated using two methods:(1) ensembles of design temporal patterns prescribed in the latest version of Australian Rainfall and Runoff, and(2) real recorded rainfall data taken from pluviograph stations modeled with continuous simulation. It is shown conclusively that the use of singular temporal patterns is ineffective in providing assurance that an OSD will mitigate the increase to peak discharge for all possible storm events. Ensemble analysis is shown to provide improved results. However, it also falls short of providing any guarantee in the face of naturally occurring rainfall.  相似文献   

8.
城市内涝防治采用市政排水与水利排涝两级排涝模式,针对城市两级排水系统标准无法衔接的问题,以深 圳市大空港区为例,考虑城市两级排水系统可能遭遇的两类衔接风险,通过构建雨量结构关系分别得到以短历时 暴雨为主和以长历时暴雨为主的设计暴雨重现期衔接关系。同时利用芝加哥雨型和珠江三角洲雨型分别推求市 政排水与水利排涝设计暴雨过程,以探讨城市两级排水系统设计暴雨雨峰之间的衔接关系。最终通过 Spearman 相关系数评估截留河流域各条支流的衔接关系与地理参数之间的相关性。结果表明,水利排涝与市政排水设计 暴雨重现期的衔接关系受降雨强度和降雨历时共同作用,且设计暴雨雨峰衔接关系存在地区差异性。以德丰围 涌为例,在市政排水设计暴雨重现期为 X 年一遇时,水利排涝设计暴雨重现期应至少设计为(2~3)X 年一遇才能 实现城市两级排水系统的衔接。  相似文献   

9.
Brazil is currently facing widespread problems in the urban environment associated with inadequate wastewater and urban drainage systems, particularly for low-income communities. These problems are promoted by the rapid and often unplanned urbanization process in developing cities and are compounded by a lack of funding, absence of planning, ineffective institutional arrangements, and inappropriate policies to provide the framework for integrated wastewater and stormwater management. Because planning for the provision of wastewater and urban drainage systems is a complex task, an integrated-modeling approach is proposed to provide a practical methodology for sanitation and urban drainage planning in Brazilian cities. In the model development, as well as technical aspects, other aspects related to institutional, financial, socio-economic, environmental and public health issues were also taken into account.  相似文献   

10.
《Journal of Hydro》2014,8(4):330-342
Despite remarkable advances in urban flood management techniques, pluvial flood damages still occur throughout the world. This may be attributed to uncertainties in the rainfall events which may disrupt the normal performance of an urban drainage system and eventually lead to inundations and damages. Therefore, the conventional urban drainage management approach focusing on system security should be modified. As a new approach to urban drainage management, this paper defines the persistence of a system as the ability of a disturbed system to resist, buffer the effects of variable disturbances and return to accepted level of performance after disturbances and introduces a framework to evaluate the concept of risk management persistence for urban drainage systems based on joint consideration of resilience and resistance standpoints. Based on this perspective, some of the required indicators were selected from the literature and adapted to the present study in order to quantify urban drainage risk management (UDRM) systems persistence against disturbances. Evaluation of urban drainage measures would indicate the level of persistence achieved. As a case study, part of the urban drainage system of city of Tehran–Iran was analyzed using the proposed scheme. Four urban drainage measures including three best management practices (BMPs) and a conventional system were added to the current urban drainage system to assess the performance of various measures in improvement of the persistence of UDRM systems. Results indicate that the analysis of the systems persistence can efficiently enable urban planners to select measures with an insight into the behavior of the UDRM systems faced with disturbances.  相似文献   

11.
Hydraulic conductivity of granular filter media and its evolution over time is a key design parameter for stormwater filtration and infiltration systems that are now widely used in management of polluted urban runoff. In fact, clogging of filter media is recognised as the main limiting factor of these stormwater treatment systems. This paper focuses on the effect of stormwater characteristics on the clogging of stormwater filters. Effect of five different operational regimes has been tested in this study of sediment concentration; pollutant concentrations; stormwater sediment size; loading rate and stormwater loading/dosing regime and compared with the Base case. For each operational condition, five column replicates were tested. Results suggest that sediment concentration in stormwater is a significant parameter affecting hydraulic and treatment performance, eventually affecting longevity of these stormwater treatment systems. Further, the size of sediments (and their relation to the size of filter media grains) in stormwater was found to be an important parameter to be considered in design of coarse filters with high infiltration rates that are used for stormwater treatment. As expected, the addition of metals and nutrients had limited or no contribution to changes in hydraulic or sediment removal performance of the studied stormwater filters. Whilst loading rate was found to be an important parameter affecting the hydraulic and treatment performance of these systems, any variation in the stormwater loading regime had a limited effect on their performance. This study therefore develops an understanding of the effect of catchment characteristics on design of filters and hence their longevity and maintenance needs.  相似文献   

12.
The design of urban stormwater systems and sanitary sewer systems consists of solving two problems: generating a layout of the system and the pipe design which includes the crown elevations, slopes and commercial pipe sizes. A heuristic model for determining the optimal (minimum cost) layout and pipe design of a storm sewer network is presented. The hierarchical procedure combines a sewer layout model formulated as a mixed-integer nonlinear programming (MINLP) problem which is solved using the General Algebraic Modeling System (GAMS) and a simulated annealing optimization procedure for the pipe design of a generated layout was developed in Excel. The GAMS and simulated annealing models are interfaced through linkage of Excel and GAMS. The pipe design model is based upon the simulated annealing method to optimize the crown elevations and diameter of pipe segments in a storm sewer network using layouts generated using GAMS. A sample scenario demonstrates that using these methods may allow for significant costs saving while simultaneously reducing the time typically required to design and compare multiple storm sewer networks.  相似文献   

13.
Best Management Practices (BMPs) have become the most effective way to mitigate non-point source pollution (NPS) issues. Much attention has been paid to NPS in rural areas, where agricultural activities increase nutrients, toxics, and sediments in surface water. Stormwater from urban areas is also a major contributor to NPS pollution. For watersheds bearing various soil types and land uses, a single type of BMP cannot be the panacea to all stormwater problems. To solve these problems, a Diagnostic Decision Support System (DDSS) was developed in this research. The DDSS can identify and locate the most critical NPS areas (hotspots) within a watershed in high spatial resolution. The DDSS can provide a series of spatially distributed small-scale BMPs which are effective in treating the NPS and are suitable for the physical environment. The BMPs, varying in types and locations, are recommended at HRU (Hydrologic Response Unit) level. The DDSS was tested in Watts Branch, a small urban watershed of the Anacostia River in metropolitan Washington D.C., USA. The process-based hydrologic model, Soil and Water Assessment Tool (SWAT), was used to simulate watershed responses. The simulation results were then used by the DDSS for BMP recommendation. Hotspots of different NPS were successfully located and prescribed with spatially distributed BMPs. The DDSS serves as a useful tool to better understand urban watersheds and to make proper stormwater management plans.  相似文献   

14.
Urbanization causes hydrological change and increases stormwater runoff volumes, leading to flooding, erosion, and the degradation of instream ecosystem health. Best management practices (BMPs), like detention ponds and infiltration trenches, have been widely used to control flood runoff events for the past decade. However, low impact development (LID) options have been proposed as an alternative approach to better mimic the natural flow regime by using decentralized designs to control stormwater runoff at the source, rather than at a centralized location in the watershed. For highly urbanized areas, LID stormwater management practices such as bioretention cells and porous pavements can be used to retrofit existing infrastructure and reduce runoff volumes and peak flows. This paper describes a modeling approach to incorporate these LID practices and the two BMPs of detention ponds and infiltration trenches in an existing hydrological model to estimate the impacts of BMPs and LID practices on the surface runoff. The modeling approach has been used in a parking lot located in Lenexa, Kansas, USA, to predict hydrological performance of BMPs and LID practices. A performance indicator system including the flow duration curve, peak flow frequency exceedance curve, and runoff coefficient have been developed in an attempt to represent impacts of BMPs and LID practices on the entire spectrum of the runoff regime. Results demonstrate that use of these BMPs and LID practices leads to significant stormwater control for small rainfall events and less control for flood events.  相似文献   

15.
As stormwater flows are intermittent, the requirement to store urban runoff is important to the design of a stormwater re-use scheme. In many urban areas, the space available to provide storage is limited and thus the need to optimise the storage volume becomes critical. This paper will highlight the advantages and disadvantages of two different approaches of providing storage: 1) a single shallow storage (0.5 m depth) in which stormwater capture and a balanced release to supply users is provided by the one unit; and 2) a dual system in which the functions of stormwater capture and supply release are provided by two separate deeper storage units (2 m depth). The comparison between the two strategies is supported by water balance modelling assessing the supply reliability and storage volume requirements for both options. Above a critical volumetric capacity, the supply yield of a dual storage system is higher than that from a single storage of equal volume mainly because of a smaller assumed footprint. The single storage exhibited greater evaporation loss and is more susceptible to algae blooms due to long water residence times. Results of the comparison provide guidance to the design of more efficient storages associated with stormwater harvesting systems.  相似文献   

16.
基于透水砖铺装系统的城市雨水利用   总被引:6,自引:0,他引:6  
针对水资源日益匮乏且面临城市雨洪威胁的现状,北京城市雨水利用势在必行;在城市雨水利用的具体形式中,采用透水砖铺装系统,具有削减径流洪峰,贮存雨水,施工维修简易等特点.从透水砖铺装系统的材料、铺装工艺、设计标准等方面进行研究,提出常规透水砖铺装系统的具体径流系数,可供城市雨水利用和市政排水工程规划设计时参考.  相似文献   

17.
Natural wastewater treatment systems (WWTSs) for urban areas in developing countries are subjected to large fluctuations in their inflow. This situation can result in a decreased treatment performance. The main aims of this paper are to introduce resilience as a performance indicator for natural WWTSs and to propose a methodology for the identification and generation of realistic disturbances of WWTSs. Firstly, a definition of resilience is formulated for natural WWTSs together with a short discussion of its most relevant properties. An important aspect during the evaluation process of resilience is the selection of appropriate disturbances. Disturbances of the WWTS are caused by fluctuations in water quantity and quality characteristics of the inflow. An approach to defining appropriate disturbances is presented by means of water quantity and quality data collected for the urban wastewater system of Coronel Oviedo (Paraguay). The main problem under consideration is the potential negative impact of stormwater inflow and infiltration in the sanitary sewer system on the treatment performance of anaerobic waste stabilisation ponds.  相似文献   

18.
This paper describes a modelling approach for evaluating the efficiency of different non-structural best management practices for stormwater management. A scenario with a set of source reduction practices was simulated using the substance flow model SEWSYS for an urban catchment in the city of G?teborg, Sweden. The scenario is based on a hypothetical control program that includes prevention, education and regulations. The simulation shows relatively high reductions of copper and PAH, 77% and 50%, respectively. The reduction in copper is mainly due to less copper roof corrosion and brake wear, while reduced road wear has the greatest effect for PAH. An important result from this study is that the nonstructural BMPs applied did not give a sufficient reduction in pollution to meet the desirable environmental quality criteria. To meet these criteria, additional BMPs must be implemented, preferably a combination of both non-structural and structural measures.  相似文献   

19.
During the last years, climate changes and urbanization are causing huge urban pluvial flood events in many countries in the world, driving to both develop and apply effective and innovative approaches for the design and management of urban stormwater systems. The gradual urbanization is provoking the increase of impervious surfaces and, consequently, of surface runoff and velocity and the reduction of concentration times of watersheds, both increasing soil erosion and worsening the water quality as a consequence of the intensive contamination. In this field, Low Impact Development (LID) practices for urban runoff control can be intended as an effective approach to both improve the urban resilience against the flooding risk and assure environmental interventions to adequate the urban stormwater systems to both climate and land use changes. In this paper, a Decision Support System (DSS) for the optimal design of LIDs in urban watershed is presented and discussed. The procedure is tested on Fuorigrotta (IT) and Ponticelli (IT) urban watersheds, with the aim of assessing the effectiveness of LIDs application in reducing both the flooded and conveyed volumes, at the expense of cost-effective solutions.  相似文献   

20.
Improved urban water management in Australia is of national importance. Water resources are stretched and urban runoff is a recognized leading cause of degradation of urban waterways. Stormwater recycling is an option that can contribute to easing these problems. Biofilters are effective structural stormwater pollution control measures with the potential for integration into stormwater treatment and recycling systems. However, premature clogging of biofilters is a major problem, with resulting decreased infiltration capacity (and hence the volume of stormwater the system can detain) and increased detention time. This paper presents preliminary findings with respect to the effect of clogging on pollutant removal efficiency in conventional stormwater filter media. A one-dimensional laboratory rig was used to investigate the impact of clogging on pollutant removal efficiency in a conventional biofiltration filter media (gravel over sand). Both the individual gravel layer and the overall multi-filter were highly efficient at removing suspended solids and particulate-associated pollutants. This removal efficiency was consistent, even as the filters became clogged. Removal of dissolved nutrients was more variable, with little reduction in concentrations overall. Although preliminary, these results challenge the concept that increased detention time improves the treatment performance of stormwater filtration systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号