首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An enrichment-separation procedure based on the coprecipitation of gold(III), palladium(II) and lead(II) ions with nickel(II)-5-methyl-4-(2-thiazolylazo) resorcinol complex has been developed. The analytical parameters including pH, amounts of 5-methyl-4-(2-thiazolylazo) resorcinol, sample volume, etc. was investigated for quantitative recoveries of Au(III), Pd(II) and Pb(II). Interference due to various cations and anions has also been investigated. The detection limits for analyte ions by 3sigma were 2.6 microg L(-1) for lead, 1.5 microg L(-1) for gold, 2.1 microg L(-1) for palladium. The accuracy of the method was evaluated by the analysis of certified reference materials (NIST SRM 2711 Montana soil, GBW 07309 Stream sediment). The proposed procedure was successfully applied to environmental samples for the determinations of analytes.  相似文献   

2.
A simple and accurate method was developed for separation and enrichment of trace levels of gold in environmental samples. The method is based on the adsorption of Au(III)-diethyldithiocarbamate complex on Amberlite XAD-2000 resin prior to the analysis of gold by flame atomic absorption spectrometry after elution with 1 molL(-1) HNO3 in acetone. Some parameters including nitric acid concentration, eluent type, matrix ions, sample volume, sample flow rate and adsorption capacity were investigated on the recovery of gold(III). The recovery values for gold(III) and detection limit of gold were greater than 95% and 16.6 microgL(-1), respectively. The preconcentration factor was 200. The relative standard deviation of the method was <6%. The adsorption capacity of the resin was 12.3 mg g(-1). The validation of the presented procedure was checked by the analysis of CRM-SA-C Sandy Soil certified reference material. The presented procedure was applied to the determination of gold in some environmental samples.  相似文献   

3.
The present work proposes the use of Bacillus subtilis immobilized on Amberlite XAD-4 as new biosorbent in trace metal determination. The procedure is based on the biosorption of Cu and Cd ions on a column of Amberlite XAD-4 resin loaded with dried, dead bacterial components prior to their determination by flame AAS. Various parameters such as pH, amount of adsorbent, eluent type and volume, flow rate of solution and matrix interference effect on the retention of the metal ions have been studied. The optimum pH values of quantitative sorption for Cu and Cd were found to be 7.0 and 7.5, respectively. These metal ions can be desorbed with 1M HCl (recovery, 96-100%). The sorption capacity of the resin was 0.0297 and 0.035 mmol g(-1) for Cu(2+) and Cd(2+), respectively. The tolerance limit of some electrolytes were also studied. This procedure was applied to Cu(2+) and Cd(2+) determination in aqueous solutions, including river and well water systems. In order to evaluate the accuracy of the proposed procedure, the certified reference materials, NRCC-SLRS-4 Riverine water and LGC7162 Strawberry leaves were analyzed.  相似文献   

4.
A new method for the preconcentration of some trace metals (Co, Ni, Cu, and Cd) as complexed with ammonium pyrrolidynedithiocarbamate (APDC) was developed using a mini-column filled with Amberlite XAD-2000 resin. Metal contents were determined by flame atomic absorption spectrometry (FAAS) after the metal complexes accumulated on the resin were eluted with 1M HNO(3) in acetone. The effects of the analytical parameters such as sample pH, quantity of complexing agent, eluent type, resin quantity, sample volume, sample flow rate, and matrix ions were investigated on the recovery of the metals from aqueous solutions. The relative standard deviation (R.S.D.) of the method was <6%. The validation of the method was confirmed using two certified reference materials (CRM TMDW-500 Drinking Water and CRM SA-C Sandy Soil C). The method was successfully applied to some stream waters and mushroom samples from Eastern Black Sea Region (Trabzon city) of Turkey.  相似文献   

5.
A simple and facile preconcentration procedure based on the coprecipitation of trace heavy metal ions with copper(II)-rubeanic acid complex has been developed. The analytical parameters including pH, amounts of rubeanic acid, sample volume, etc. was investigated for the quantitative recoveries of Pb(II), Fe(III), Cd(II), Au(III), Pd(II) and Ni(II). No interferic effects were observed from the concomitant ions. The detection limits for analyte ions by 3 sigma were in the range of 0.14 microg/l for iron-3.4 microg/l for lead. The proposed coprecipitation method was successfully applied to water samples from Palas Lake-Kayseri, soil and sediment samples from Kayseri and Yozgat-Turkey.  相似文献   

6.
Due to the toxicity of chromium, species depend on their chemical properties and bioavailabilities, speciation of chromium is very important in environmental samples. A speciation procedure for chromium(III), chromium(VI) and total chromium in environmental samples is presented in this work, prior to flame atomic absorption spectrometric determination of chromium. The procedure is based on the adsorption of Cr(III)-diphenylcarbazone complex on Amberlite XAD-1180 resin. After oxidation of Cr(III), the developed solid phase extraction system was applied to determinate the total chromium. Cr(III) was calculated as the difference between the total Cr content and the Cr(VI) content. The analytical conditions for the quantitative recoveries of Cr(VI) on Amberlite XAD-1180 resin were investigated. The effects of some alkaline, earth alkaline, metal ions and also some anions were also examined. Preconcentration factor was found to be 75. The detection limits (LOD) based on three times sigma of the blank (N: 21) for Cr(VI) and total chromium were 7.7 and 8.6 microg/L, respectively. Satisfactory results for the analysis of total chromium in the stream sediment (GBW7310) certified reference material for the validation of the presented method was obtained. The procedure was applied to food, water and pharmaceutical samples successfully.  相似文献   

7.
A method for separation-preconcentration of Pb(II), Cr(III), Cu(II), Ni(II) and Cd(II) ions by membrane filtration has been described. The method based on the collection of analyte metal ions on a cellulose nitrate membrane filter and determination of analytes by flame atomic absorption spectrometry (FAAS). The method was optimized for several parameters including of pH, matrix effects and sample volume. The recoveries of analytes were generally in the range of 93-100%. The detection limits by 3 sigma for analyte ions were 0.02microgL(-1) for Pb(II), 0.3microgL(-1) for Cr(III), 3.1microgL(-1) for Cu(II), 7.8microgL(-1) for Ni(II) and 0.9microgL(-1) for Cd(II). The proposed method was applied to the determination of lead, chromium, copper, nickel and cadmium in tap waters and RM 8704 Buffalo River Sediment standard reference material with satisfactory results. The relative standard deviations of the determinations were below 10%.  相似文献   

8.
A new method using a column packed with Amberlite XAD-2010 resin as a solid-phase extractant has been developed for the multi-element preconcentration of Mn(II), Co(II), Ni(II), Cu(II), Cd(II), and Pb(II) ions based on their complex formation with the sodium diethyldithiocarbamate (Na-DDTC) prior to flame atomic absorption spectrometric (FAAS) determinations. Metal complexes sorbed on the resin were eluted by 1 mol L(-1) HNO3 in acetone. Effects of the analytical conditions over the preconcentration yields of the metal ions, such as pH, quantity of Na-DDTC, eluent type, sample volume and flow rate, foreign ions etc. have been investigated. The limits of detection (LOD) of the analytes were found in the range 0.08-0.26 microg L(-1). The method was validated by analyzing three certified reference materials. The method has been applied for the determination of trace elements in some environmental samples.  相似文献   

9.
A cloud point extraction procedure was presented for the preconcentration of copper(II) ion in various samples. After complexation by 4-(phenyl diazenyl) benzene-1,3-diamine (PDBDM) (chrysoidine), copper(II) ions were quantitatively recovered in Triton X-114 after centrifugation. 0.5 ml of methanol acidified with 1.0 mol L−1 HNO3 was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The influence of analytical parameters including ligand, Triton X-114 and HNO3 concentrations, bath temperature, heating time, centrifuge rate and time were optimized. The effect of the matrix ions on the recovery of copper(II) ions was investigated. The detection limit (3S.D.b/m, n = 10) of 0.6 ng mL−1 along with preconcentration factor of 30 and enrichment factor of 41.1 with R.S.D. of 1.0% for Cu was achieved. The proposed procedure was applied to the analysis of various environmental and biological samples.  相似文献   

10.
A new chelating resin, covalently linked 1,6-bis(2-carboxy aldehyde phenoxy)butane with the Amberlite XAD-16 was synthesized and used for preconcentration of Cu(II) and Cd(II) prior to their determination by flame atomic absorption spectrometry (FAAS). It was characterized by elemental analyses and Fourier Transform Infrared Spectroscopy (FT-IR). Cu(II) and Cd(II) ions were quantitatively preconcentrated on minicolumn loaded with synthesised resin at pH 4.00 and 6.00, respectively. They were eluated with 5 mL of 0.5 mol L−1 HCl. Recoveries of Cu(II) and Cd(II) were found to be 100 ± 2.15, 100 ± 1.40 (N = 5), the limits of detection of Cu(II) and Cd(II) in the determination by FAAS (3s, N = 20) were found to be 0.33 and 1.19 μg L−1, respectively. The effect of foreign ions on the recovery has been investigated. The proposed method has been applied for the determination of Cu(II) and Cd(II) ions to the real samples collected from Tigris river water in Diyarbak?r and Elaz?? cities in Turkey. Standard addition method and analysis of the certified reference material (NCS-DC 73350) was employed to check the accuracy of the method.  相似文献   

11.
A solid phase extraction (SPE) preconcentration system, coupled to a flame atomic absorption spectrometer (FAAS), was developed for the determination of copper(II), cadmium(II), lead(II), manganese(II), iron(III), nickel(II) and cobalt(II) ions at the microg L(-1) levels on Penicillium italicum-loaded on Sepabeads SP 70. The analytes were adsorbed on biosorbent at the pH range of 8.5-9.5. The adsorbed metals were eluted with 1 mol L(-1) HCl. The influences of the various analytical parameters including pH of the aqueous solutions, sample volume, flow rates were investigated for the retentions of the analyte ions. The recovery values are ranged from 95-102%. The influences of alkaline, earth alkaline and some transition metal ions were also discussed. Under the optimized conditions, the detection limits (3s, n=21) for analytes were in the range of 0.41microg L(-1) (cadmium) and 1.60microg L(-1) (iron). The standard reference materials (IAEA 336 Lichen, NIST SRM 1573a Tomato leaves) were analyzed to verify the proposed method. The method was successfully applied for the determinations of analytes in natural water, cultivated mushroom, lichen (Bryum capilare Hedw), moss (Homalothecium sericeum) and refined table salt samples.  相似文献   

12.
A cloud point extraction procedure was presented for the preconcentration of copper, nickel and cobalt ions in various samples. After complexation with methyl-2-pyridylketone oxime (MPKO) in basic medium, analyte ions are quantitatively extracted to the phase rich in Triton X-114 following centrifugation. 1.0 mol L−1 HNO3 nitric acid in methanol was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The adopted concentrations for MPKO, Triton X-114 and HNO3, bath temperature, centrifuge rate and time were optimized. Detection limits (3 SDb/m) of 1.6, 2.1 and 1.9 ng mL−1 for Cu2+, Co2+ and Ni2+ along with preconcentration factors of 30 and for these ions and enrichment factor of 65, 58 and 67 for Cu2+, Ni2+ and Co2+, respectively. The high efficiency of cloud point extraction to carry out the determination of analytes in complex matrices was demonstrated. The proposed procedure was applied to the analysis of biological, natural and wastewater, soil and blood samples.  相似文献   

13.
Separation/preconcentration of copper and cadmium using TiO(2) core-Au shell nanoparticles modified with 11-mercaptoundecanoic acid and their slurry analysis by flame atomic absorption spectrometry were described. For this purpose, at first, titanium dioxide nanoparticles were coated with gold shell by reducing the chloroauric acid with sodium borohydride and then modified with 11-mercaptoundecanoic acid. The characterization of modified nanoparticles was performed using ultra-violet spectroscopy and dynamic light scattering. Copper and cadmium were then collected on the prepared sorbent by batch method. The solid phase loaded with the analytes was separated by centrifugation and the supernatant was removed. Finally, the precipitate was slurried and directly aspirated into the flame for the determination of analytes. Thus, elution step and its all drawbacks were eliminated. The effects of pH, amount of sorbent, slurry volume, sample volume and diverse ions on the recovery were investigated. After optimization of experimental parameters, the analytes in different certified reference materials and spiked water samples were quantitatively recovered with 5% RSD. The analytes were enriched up to 20-fold. Limits of detection (N=10, 3σ) for copper and cadmium were 0.28 and 0.15 ng mL(-1), respectively.  相似文献   

14.
Activated carbon loaded with xylenol orange in a mini-column was used for the highly selective separation and preconcentration of Pb(II) ions. An on-line system for enrichment and the determination of Pb(II) was carried out on flame atomic absorption spectrometry. The conditions of preconcentration and quantitative recovery of Pb(II) from diluted solution, such as pH of aqueous phase, amount of the sorbent, volume of the solutions and flow variables were studied as well as effect of potential interfering ions. Under the optimum conditions, Pb(II) in an aqueous sample was concentrated about 200-fold and the detection limit was 0.4 ng mL−1 Pb(II). The adsorption capacity of the solid phase was 0.20 mg of lead per one gram of the modified activated carbon. The modified activated carbon is stable for several treatments of sample solutions without the need for using any chemical reagent. The recovery of lead(II) from river water, waste water, tap water, and in the following reference materials: SRM 2711 Montana soil and GBW-07605 tea were obtained in the range of 97–104% by the proposed method.  相似文献   

15.
Bacillus thuringiensis var. israelensis immobilized on Chromosorb 101 that is a new solid phase extractor has been presented at this work for the preconcentration and separation of cadmium(II), lead(II), manganese(II), chromium(III), nickel(II) and cobalt(II) in environmental samples. The analytical parameters including pH of aqueous solutions, sample volume, eluent types, etc. were investigated for the quantitative recoveries of the analytes. The influences of the some metal ions as concomitant were investigated. Under the optimized conditions, the detection limits by 3sigma for analyte ions were in the range of 0.37-2.85 microg L(-1). The accuracy of the developed procedure was confirmed by IAEA 336 Lichen and NIST SRM 1573a Tomato leaves certified reference materials. The method was also applied successfully to the determination of analytes in microwave digested red wine, rice and canned fish samples and sea water, spring water and urine samples.  相似文献   

16.
Nanometer titanium dioxide immobilized on silica gel (immobilized nanometer TiO2) was prepared by sol-gel method and characterized using X-ray diffraction (XRD) and scanning electron microscope (SEM). The adsorptive capability of immobilized nanometer TiO2 for lead was assessed in this work using column method. It was found that lead can be quantitatively retained by immobilized nanometer TiO2 in the pH range 4-7, then eluted completely with 1.0molL(-1) HCl. The adsorption capacity of immobilized nanometer TiO2 for Pb was found to be 3.16mgg(-1). A new method has been developed for the determination of trace lead based on preconcentration with a microcolumn packed with immobilized nanometer TiO2 prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS). The detection limit of this method for Pb was 9.5ngL(-1) with an enrichment factor of 50, and the relative standard deviations (R.S.D.s) was 3.2% at the 10ngmL(-1) Pb level. The method was validated using a certified reference material, and was applied for the determination of trace lead in water samples.  相似文献   

17.
bis-[2-Hydroxy-1-naphthaldehyde] thiourea was synthesized and preconcentration cloud point extraction (CPE) for speciation determination of chromium(III) and (VI) in various environmental samples with flame atomic absorption spectrometry (FAAS) has been developed. Chromium(III) complexes with bis-[2-hydroxynaphthaldehyde] thiourea is subsequently entrapped in the surfactant micelles. After complexation of chromium(III) with reagent, the analyte was quantitatively extracted to the surfactant-rich phase in the non-ionic surfactant Triton X-100 after centrifugation. The effect of pH, concentration of chelating agent, surfactant, equilibration temperature and time on CPE was studied. The relative standard deviation was 2.13% and the limits of detection were around 0.18 μg L−1.  相似文献   

18.
In this study a new method for chromium speciation in water using solid phase extraction coupled to a flow injection system and flame atomic absorption spectrometry was developed. The adsorption behavior of Cr(III) and Cr(VI) on Nb2O5-SiO2 allowed the selective separation of Cr(III) from Cr(VI) in the pH range of 6-9. Thus, a method for Cr(III) preconcentration and extraction using Nb2O5-SiO2 was developed. Total chromium was determined after the reduction of Cr(VI) to Cr(III) using sodium sulfite in acidic medium. The operational variables of the preconcentration and reduction procedures were optimized through full factorial and Doehlert designs. The limit of detection for Cr(III) was 0.34microgL(-1) and the precision was below 4.6%. Results for recovery tests using different environmental samples were between 90 and 105%. Certified reference materials (NIST 1640 and NIST 1643e) were analyzed in order to check the accuracy of the proposed method, and the results were in agreement with the certified values.  相似文献   

19.
A new tris(2-aminoethyl) amine (TREN) functionalized silica gel (SG-TREN) was prepared and investigated for selective solid-phase extraction (SPE) of trace Cr(III), Cd(II) and Pb(II) prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Identification of the surface modification was characterized and performed on the basis of FT-IR. The separation/preconcentration conditions of analytes were investigated, including effects of pH, the shaking time, the sample flow rate and volume, the elution condition and the interfering ions. At pH 4, the maximum adsorption capacity of Cr(III), Cd(II) and Pb(II) onto the SG-TREN were 32.72, 36.42 and 64.61 mg g(-1), respectively. The adsorbed metal ions were quantitatively eluted by 5 mL of 0.1 mol L(-1) HCl. Common coexisting ions did not interfere with the separation. According to the definition of International Union of Pure and Applied Chemistry, the detection limits (3sigma) of this method for Cr(III), Cd(II) and Pb(II) were 0.61, 0.14 and 0.55 ng mL(-1), respectively. The relative standard deviation under optimum conditions is less than 4.0% (n=11). The application of this modified silica gel to preconcentration trace Cr(III), Cd(II) and Pb(II) of two water samples gave high accurate and precise results.  相似文献   

20.
Trace amounts of Cu (II), Pb (II), and Cd (II) in a wastewater sample were preconcentrated with a novel cross‐linked magnetic chitosan modified with a new synthesised methionine‐glutaraldehyde Schiff''s base (MG‐Chi/Fe3O4) as a dispersive solid‐phase extraction (DSPE) adsorbent. The adsorbed metal ions were then eluted with a specific volume of suitable solution and determined by flame atomic absorption spectrometry (FAAS). Various parameters affecting the extraction efficiency of the metal ions were investigated and optimised, including pH, amount of adsorbent, extraction time, type and volume rate of eluent, elution time, sample volume, and effect of interfering ions. The adsorption kinetics are more consistent with the pseudo‐second order model. The results were statistically interpreted and the analytical performance of the proposed method was found to have preconcentration factors of 55, 60, and 50 μg L−1 for Cu(II), Pb(II), and Cd(II), respectively, limits of detection were 0.22, 0.24, and 0.10 μg L−1 for Cu(II), Pb(II), and Cd(II), respectively, with a relative standard deviation (1.5%‐2.8 %), and the liner range was 5–1000 for Cu(II) and Pb(II) and 2.5–1000 for Cd(II). It was concluded that this method was suitable for successful simultaneous determination of Cu(II), Pb(II), and Cd(II) in industrial wastewater samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号