首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Intracerebroventricular administration of histamine to cats caused hypothermia followed by a rise in body temperature. 2-Methylhistamine caused a similar biphasic response, while 3-methylhistamine had no effect on body temperature and 4-methylhistamine produced a delayed hyperthermia. Some tolerance to the hypothermic activity developed when a series of closely spaced injections of histamine was given. 2. Doses of histamine and 2-methylhistamine which altered body temperature when given centrally were ineffective when infused or injected I.V. 3. Pyrilamine, an H1-receptor antagonist, prevented the hypothermic response to histamine. 4. Hypothermic responses to histamine at an environmental temperature of 22 degrees C were comparable to responses in a cold room at 4 degrees C in both resting animals and animals acting to depress a lever to escape an external heat load. A change in error signal from the thermostat could account for these results. However, lesser degrees of hypothermia developed when histamine was given to animals in a hot environment. In some, but not all animals, this smaller response could be attributed to inadequate heat loss in spite of maximal activation of heat-loss mechanisms. 5. The hyperthermic response to histamine was antagonized by central, but not peripheral, injection of metiamide, an H2-receptor antagonist. 6. The results indicate that histamine and related agents can act centrally to cause both hypothermia, mediated by H1-receptors, and hyperthermia, mediated by H2-receptors.  相似文献   

2.
Studies were conducted in anesthetized dogs to determine whether the mesenteric vasodilator response to histamine is mediated by H1 receptors alone or whether H2 receptors are also involved in the response. Evidence favoring a role for both receptors included: 1) the vasodilator response to histamine was inhibited by either the H1-receptor antagonist, tripelennamine, or the H2-receptor antagonist, metiamide; 2) both the H1 agonist, 2-methylhistamine, and the H2 agonist, 4-methylhistamine, induced dilator responses in the mesenteric circulation; and 3) two temporal patterns of vasodilation could be distinguished, namely a transient spike and subsequent fade of blood flow (seen with either the H1 agonist or with histamine after H2-receptor blockade) and a sustained and stable increase in flow (seen with either the H2 agonist or with histamine after H1 blockade). Metiamide appeared to be a potent inhibitor of the mesenteric vasodilator response to histamine at least equal to tripelennamine.  相似文献   

3.
Using a microdialysis method and a new high performance liquid chromatography (HPLC)-fluorometric method for the detection of gamma-aminobutyric acid (GABA), we investigated the effect of thioperamide, an H3 receptor antagonist, on the GABA content in the dialysate from the anterior hypothalamic area of rats anesthetized with urethane. The addition of thioperamide to the perfusion fluid increased the release of GABA and histamine. Depleting neuronal histamine with alpha-fluoromethylhistidine, a specific inhibitor of histidine decarboxylase, and the administration of immepip, an H3 agonist, had no effect on basal- and thioperamide-induced GABA release. In addition, an infusion of clobenpropit, the most specific H3 receptor antagonist available, did not alter the basal release of GABA. On the other hand, histamine release was decreased by immepip and increased by thioperamide and clobenpropit. Removing Ca2+ from the perfusion fluid did not alter the effect of thioperamide on the GABA release, whereas that on histamine release was abrogated. These results suggest that the effect of thioperamide on GABA release is not mediated by histamine H3 receptors and that thioperamide acts on the transporter to cause an efflux of GABA from neurons and/or glia. Thioperamide is a popular H3 receptor antagonist which has been used applied to many studies. However, results using this compound should be interpreted in consideration of its effects on GABA release.  相似文献   

4.
The role of histamine H1-, H2- and H3-receptors was studied on neural transmission in ascending excitatory pathways of the guinea pig ileum. A two-compartment (oral and anal compartments) bath was used: ascending neural pathways were activated by electrical stimulation in the anal compartment and the resulting contraction of the circular muscle in the oral compartment was recorded. Drugs were applied in the anal compartment and each agonist was evaluated in the presence of the antagonists of the other two receptors. In the presence of cimetidine (10 microM) and thioperamide (1 microM), histamine (0.03-3 microM) depressed the nerve-mediated contractions (5-70% inhibition, P <.05-.01). The inhibitory effect of histamine was antagonized by mepyramine. At the higher concentrations (10 and 30 microM), histamine elicited contractions of the circular muscle in the oral compartment, and these were abolished by mepyramine (1 microM) and tetrodotoxin (0.6 microM). The H2 agonists dimaprit (30 and 100 microM) and amphamine (0.1-300 microM) produced small contractions of the circular muscle in the oral compartment. These contractile responses were abolished by tetrodotoxin (0.6 microM) and cimetidine (10 microM). The H3 agonist R-alpha-methylhistamine (0.001-1 microM) inhibited (2-58%, P <.05) the nerve-mediated contractions. This inhibitory effect was antagonized by the H3 antagonist thioperamide. These results indicate that 1) histamine, acting at H1 receptors, at lower concentrations depresses synaptic transmission, although at higher concentrations activates the enteric excitatory ascending pathway; 2) activation of H2 receptors by H2 agonists stimulates the enteric excitatory ascending pathways and 3) activation of H3 receptors inhibits synaptic transmission.  相似文献   

5.
Recent studies have shown that cimetidine, burimamide and improgan (also known as SKF92374, a cimetidine congener lacking H2 antagonist activity) induce antinociception after intracerebroventricular administration in rodents. Because these substances closely resemble the structure of histamine (a known mediator of some endogenous analgesic responses), yet no role for known histamine receptors has been found in the analgesic actions of these agents, the structure-activity relationships for the antinociceptive effects of 21 compounds chemically related to H2 and H3 antagonists were investigated in this study. Antinociceptive activity was assessed on the hot-plate and tail-flick tests after intracerebroventricular administration in rats. Eleven compounds induced time-dependent (10-min peak) and dose-dependent antinociceptive activity with no observable behavioral impairment. ED50 values, estimated by nonlinear regression, were highly correlated across nociceptive assays (r2 = 0.98, n = 11). Antinociceptive potencies varied more than 6-fold (80-464 nmol), but were not correlated with activity on H1, H2 or H3 receptors. Although highly potent H3 antagonists such as thioperamide lacked antinociceptive activity, homologs of burimamide and thioperamide containing N-aromatic substituents retained H3 antagonist activity and also showed potent, effective analgesia. A literature review of the pharmacology of these agents did not find a basis for their antinociceptive effects. Taken with previous findings, the present results suggest: 1) these compounds act on the brain to activate powerful analgesic responses that are independent of known histamine receptors, 2) the structure-activity profile of these agents is novel and 3) brain-penetrating derivatives of these compounds could be clinically useful analgesics.  相似文献   

6.
Responses to the histamine H3 receptor agonist R-(-)-alpha-methyl-histamine were investigated in the mesenteric vascular bed of the cat under constant-flow conditions. Injections of R-(-)-alpha-methyl-histamine and histamine caused dose-related decreases in mesenteric perfusion pressure with R-(-)-alpha-methyl-histamine being 1000-fold less potent than histamine when doses were compared on a nmol basis to take molecular weight into account. Responses to R-(-)-alpha-methyl-histamine were not altered by histamine H1 or H2 receptor antagonists at a time when responses to histamine were significantly reduced. The histamine H3 receptor antagonist thioperamide reduced responses to R-(-)-alpha-methyl-histamine but was without effect on responses to histamine [6-[2-(4-imidazolyl)ethylamino]-N-(4-trifluoro-methylphenyl)heptaneca rdoxamide dimaleate] (HTMT), or dimaprit. These data suggest the presence of histamine H1, H2 and H3 receptors mediating vasodilation in the mesenteric vascular bed. Responses to R-(-)-alpha-methyl-histamine and histamine were reduced by the nitric oxide synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) but were not altered by the cyclooxygenase inhibitor meclofenamate, the alpha-adrenoceptor blocker phentolamine, or adrenergic nerve terminal depleting agent reserpine. The present data suggest that histamine H3 receptors mediating vasodilation are present in the mesenteric vascular bed and that responses are mediated by the release of nitric oxide but not vasodilator prostaglandins or an effect on the adrenergic nervous system. These results indicate that vasodilator responses to histamine involve the activation of histamine H1 and H2 receptors and the release of nitric oxide in the mesenteric vascular bed of the cat.  相似文献   

7.
We have investigated the possible existence of the H3 histamine receptor in human skin with the highly selective ligands R alpha methylhistamine (RAMHA) (H3 agonist) and thioperamide (H3 antagonist). We compared the intradermal effects of RAMHA with histamine, and studied their potential modulation by the H1 antagonist terfenadine, and H2 antagonist cimetidine. The effects of RAMHA and thioperamide on codeine phosphate-, substance P- and histamine-induced weal and flare responses were also studied. RAMHA produced dose-related weal and flare responses that were approximately 10- and fivefold less, respectively, than responses to histamine. Flare responses to RAMHA were significantly inhibited by oral terfenadine (P < 0.05). Weal and flare responses to histamine after oral cimetidine showed much intersubject variation, and cimetidine did not significantly alter either RAMHA- or histamine-induced weal and flare responses. Codeine phosphate-, substance P- and histamine-induced responses were not significantly affected by concurrent administration of RAMHA. Thioperamide was not found to influence codeine phosphate-, substance P-, RAMHA- or histamine-induced effects. RAMHA induces vascular (weal and flare) responses in human skin, and these responses are partially inhibited by terfenadine. There is a trend for RAMHA to have an additive effect to the weal induced by substance P and histamine, although our results largely do not reach statistical significance. Thioperamide does not affect the vascular responses to RAMHA, codeine phosphate, histamine or substance P. We cannot conclude that the effects of RAMHA are induced by H3 receptors on cutaneous endothelial or mast cells.  相似文献   

8.
1. Effects of substances which are able to alter brain histamine levels and two histamine H1 receptor agonists were investigated in mice by means of an animal model of depression, the forced swim test. 2. Imipramine (10 and 30 mg kg(-1), i.p.) and amitriptyline (5 and 15 mg kg(-1), i.p.) were used as positive controls. Their effects were not affected by pretreatment with the histamine H3 receptor agonist, (R)-alpha-methylhistamine, at a dose (10 mg kg(-1), i.p.) which did not modify the cumulative time of immobility. 3. The histamine H3 receptor antagonist, thioperamide (2-20 mg kg(-1), s.c.), showed an antidepressant-like effect, with a maximum at the dose of 5 mg kg(-1), which was completely prevented by (R)-alpha-methylhistamine. 4. The histamine-N-methyltransferase inhibitor, metoprine (2-20 mg kg(-1), s.c.), was effective with an ED50 of 4.02 (2.71-5.96) mg kg(-1); its effect was prevented by (R)-alpha-methylhistamine. 5. The histamine precursor, L-histidine (100-1000 mg kg(-1), i.p.), dose-dependently decreased the time of immobility [ED30 587 (499-712) mg kg(-1)]. The effect of 500 mg kg(-1) L-histidine was completely prevented by the selective histidine decarboxylase inhibitor, (S)-alpha-fluoromethylhistidine (50 mg kg(-1), i.p.), administered 15 h before. 6. The highly selective histamine H1 receptor agonist, 2-(3-trifluoromethylphenyl)histamine (0.3-6.5 microg per mouse, i.c.v.), and the better known H1 agonist, 2-thiazolylethylamine (0.1-1 microg per mouse, i.c.v.), were both dose-dependently effective in decreasing the time of immobility [ED50 3.6 (1.53-8.48) and 1.34 (0.084-21.5) microg per mouse, respectively]. 7. None of the substances tested affected mouse performance in the rota rod test at the doses used in the forced swim test. 8. It was concluded that endogenous histamine reduces the time of immobility in this test, suggesting an antidepressant-like effect, via activation of H1 receptors.  相似文献   

9.
Histamine is a general dilator of rat blood vessels. We investigated the relative contribution of receptor subtypes to the rat mesenteric dilator responses initiated by histamine and related agonists. Histamine initiated dose, and endothelium-dependent, dilation of constricted mesenteric beds with an ED50 of 0.4 +/- 0.1 nmol. The ED50 was increased 10-fold by 0.1 microM chlorpheniramine (a histamine H1-receptor selective antagonist). Histamine H2 receptor blockade with tiotidine (0.1 microM) slightly decreased, while thioperamide (1 microM), a selective histamine H3 receptor antagonist, did not block histamine-induced dilation. Mesenteric bed dilation initiated by histamine H2 receptor selective agonists, amthamine and dimaprit, were antagonized markedly by tiotidine. However, the dilation initiated by the putative histamine H3 receptor selective agonists, R(-)- or S(+)-alpha-methylhistamine and imetit were not affected by thioperamide (1 microM). Histamine H2- and H3-receptor mediated dilator effects were endothelium-independent and were blocked by either excess (80 mM) extracellular K+, or 1 mM tetrabutylammonium (a non-selective K+ channel blocker), as well as by 1 microM dequalinium, a non-peptide blocker of the small conductance Ca2+-activated (SKCa) K+ channels. We conclude that (i) histamine H1 receptor subtype predominantly mediates endothelium-dependent dilator effect of histamine, and (ii) vascular hyperpolarization through opening of K+ channels (SKCa) mediate the dilator responses to histamine H2 receptor (amthamine and dimaprit) and the putative histamine H3 receptor (R(-)-alpha-methylhistamine and imetit) agonists.  相似文献   

10.
Serotonergic and histaminergic neuronal systems are both involved in mediation of the stress-induced release of the pituitary hormones prolactin (PRL) and ACTH. We investigated the possibility of an interaction between serotonin (5-HT) and histamine (HA) in regulation of PRL and ACTH secretion in conscious male rats. Animals were pretreated systemically with antagonists to 5-HT1, 5-HT2 or 5-HT3 receptors prior to intracerebroventricular (icv) administration of HA. The 5-HT1 + 2 receptor antagonist methysergide prevented and the 5-HT2 receptor antagonist LY 53857 attenuated the HA-induced PRL release while the 5-HT3 receptor antagonist ondansetron had no effect on this response. None of the three 5-HT receptor antagonists affected the ACTH response to HA. Specific blockade of HA synthesis by alpha-fluoromethylhistidine or blockade of postsynaptic HA receptors by icv infusion of the H1 receptor antagonist mepyramine or the H2 receptor antagonist cimetidine inhibited the PRL response to 5-HT or to the 5-HT precursor 5-hydroxytryptophan (5- HTP) given in combination with the 5-HT reuptake inhibitor fluoxetine (Flx). Blockade of the histaminergic system had no effect on the ACTH response to serotonergic stimulation. The H3 receptors are inhibitory HA receptors. Systemic pretreatment with the H3 receptor agonist R(alpha)methylhistamine, or the H3 receptor antagonist thioperamide had no effect on the hormone response to activation of the serotonergic system by 5-HTP plus Flx. We conclude that the serotonergic and histaminergic neuronal systems interact in their stimulation of PRL secretion, but not in their stimulation of ACTH secretion. This interaction involves serotonergic 5-HT1 and 5-HT2 receptors and histaminergic H1 and H2 receptors. Furthermore, the previously observed inhibitory effect of the H3 receptor agonist R(alpha)methylhistamine on stress-induced PRL and ACTH release seems not to be exerted by activation of presynaptic H3 receptors located on serotonergic neurons but rather on histaminergic neurons.  相似文献   

11.
Metoprine elevates brain histamine content by blocking the conversion of histamine to methylhistamine. It suppresses food intake, increases water intake. and induces diuresis in rats. In the present experiment, to study which receptors were involved in these metoprine-induced changes, H1, H2, and H3 receptor blockers were administered to metoprine (10 mg/kg IP)-treated rats. The food and water consumption and urine excretion were measured at 10 and 24 h after the drug administration. It was found that systemic administration of the H3 receptor antagonist, thioperamide (5 mg/kg IP), supplemented the feeding suppressive effect of metoprine. In addition to this, the H1 receptor antagonist mepyramine (20 mg/kg IP) antagonized the suppression of feeding in metoprine-treated rats, whereas the H2 receptor antagonist, ranitidine (100 mg/kg IP), had no effect. Mepyramine also decreased the diuretic response to metoprine, whereas ranitidine or thioperamide were virtually without effect. The present results show that elevation of brain histamine content by inhibiting the catabolism of histamine suppresses food intake, and this effect of metoprine can be abolished by pretreatment with antihistamines. Although the blockade of H1 receptors also attenuates the diuretic response to metoprine, further studies are needed to understand the mechanisms that mediate the effects of metoprine on water balance.  相似文献   

12.
BACKGROUND & AIMS: The role of histamine H3 receptors in the regulation of gastric acid secretion is unclear. The present study was designed to characterize the location of H3 receptors in the fundus of the stomach and the mechanism by which these receptors regulate acid secretion. METHODS: Acid, somatostatin, and histamine secretions were measured in the isolated mouse stomach. RESULTS: Thioperamide (H3 antagonist) increased somatostatin and decreased histamine and acid secretion in a concentration-dependent manner. (r)-alpha-Methylhistamine (H3 agonist) had the opposite effect, decreasing somatostatin and increasing histamine and acid secretion. The pattern implies that endogenous histamine, acting via H3 receptors, exerts an inhibitory paracrine influence on somatostatin secretion. Somatostatin antibody increased basal histamine secretion and abolished the decrease in histamine and acid secretion induced by thioperamide, confirming that changes in histamine and acid secretion induced by the activation of H3 receptors reflected changes in somatostatin secretion. Similar effects were obtained when acid secretion was stimulated by histamine: thioperamide augmented somatostatin and thus inhibited acid secretion, and (r)-alpha-methylhistamine attenuated somatostatin and increased acid secretion. CONCLUSIONS: Reciprocal inhibitory paracrine pathways link histamine and somatostatin cells in the gastric fundus. Histamine, acting via H3 receptors, augments acid secretion by eliminating the inhibitory influence of somatostatin.  相似文献   

13.
The ability of histamine H3 receptor ligands to interact with 5-HT3 receptors in NG108-15 cells was studied using the whole cell patch clamp recording technique. Imetit, a histamine H3 receptor agonist, generated inward currents and exhibited weak partial agonist activity at the 5-HT3 receptor (EC50 = 11.8 microM). Imetit-induced currents were slow to desensitize and at a high concentration reduced in size. The histamine H3 receptor antagonists iodophenpropit and thioperamide did not generate inward currents but were able to inhibit 5-hydroxytryptamine (5-HT) responses with an IC50 of 1.57+/-0.3 microM and 13.7+/-3.5 microM, respectively. Thioperamide is probably a non-competitive antagonist which may have more than one binding site on the receptor.  相似文献   

14.
The aim of this study was to investigate the possible involvement of the histamine H3 receptor in control of exocrine pancreatic secretion from the guinea-pig. In in vitro experiments, the H3 receptor agonist (R)-alpha-methylhistamine (0.01-10 microM) elicited a concentration-dependent decrease in the release of alpha-amylase. (R)-alpha-Methylhistamine concentrations above 10 microM evoked a concentration-dependent increase in alpha-amylase secretion. Application of mepyramine (1 microM) partially blocked this increase. The H3 receptor antagonist thioperanide (1 microM) blocked the effects of (R)-alpha-methylhistamine below 10 microM. Histamine and (R)-alpha-methylhistamine attenuated both protein release elicited during electrical-field stimulation and the release of tritiated choline, and these effects were reversed by thioperamide. In an in vivo study, (R)-alpha-methylhistamine increased juice secretion and total protein content of the juice by 40%. Histamine H1 and H2 receptor antagonists blocked this increase and uncovered an attenuation of the secretory parameters (juice flow 28%, total protein content 44%). This attenuation was blocked by thioperamide. These observations suggest that stimulation of the histamine H3 receptor in the pancreas results in a decreased fluid and enzyme release by inhibition of acetylcholine release from intrinsic pancreatic nerves.  相似文献   

15.
Drugs acting at the three known classes of histamine receptors were injected intracerebroventricularly into the rat. The effects of these drugs upon synaptic potentials recorded from the dentate gyrus of the freely-moving rat were determined. Population spikes and field excitatory postsynaptic potentials were recorded from the granule cell layer of the dentate gyrus following stimulation of the perforant path. Drugs, dissolved in 0.9% NaCl were applied into the lateral cerebral ventricle in a volume of 5 microl over a period of 6 min. The histamine H1 receptor antagonist mepyramine (0.4 or 0.8 microg) had no significant effect on population spikes or field excitatory postsynaptic potentials. In contrast the H2 receptor antagonist cimetidine (3.25, 6.5 or 13 microg) showed a biphasic effect. At the lower doses (3.25 or 6.5 microg) a small (15%) depression of the field excitatory postsynaptic potentials and population spikes was observed beginning about 1 h following the infusion. At the highest dose tested (13 microg) a marked increase of the population spike was observed beginning immediately following the infusion and lasting for 90 min. Application of the H3 receptor agonist R-alpha-methylhistamine (0.2 microg) depressed the field excitatory postsynaptic potentials (15% at 4 h post-injection) and even more strongly the population spike (50%). Surprisingly, at higher doses (0.4 and 0.8 microg) no effect was seen. The H3 receptor antagonist thioperamide (0.41 and 0.82 microg) did not cause an increase in synaptic potentials but rather at the highest dose a small depression occurred at later time points (2-4 h following the infusion). At the lower dose (0.41 microg) thioperamide blocked the effect of R-alpha-methylhistamine (0.2 microg). These results show that the histaminergic system modulates information flow through the dentate gyrus in a complex manner involving both histamine H2 and H1 receptors.  相似文献   

16.
1. The effects of magnolol, isolated and purified from the cortex of Magnolia officinalis Rehd. et Wils, on thermoregulation and hypothalamic release of 5-hydroxytryptamine (5-HT) by in vivo microdialysis were assessed in normothermic rats and in febrile rats treated with interleukin-1 beta. 2. Intraperitoneal administration of magnolol (25-100 mg/kg) produced a decrease in colon temperature, an increase in foot skin temperature, a decrease in metabolic rate and a decrease in the endogenous release of 5-HT in the rat hypothalamus. 3. Depletion of rat brain 5-HT, produced by intracerebroventricular pretreatment with 5,7-dihydroxytryptamine, attenuated the magnolol-induced hypothermia, cutaneous vasodilation and decreased metabolism. 4. Intracerebroventricular administration of (+/-)-2,5-dimethoxy-4-iodoamphetamine (a 5-HT2 receptor agonist; 5-10 micrograms/5 microL) increased basal colon temperature and reversed the magnolol-induced hypothermia. 5. The increases in both colon temperature and hypothalamic 5-HT release produced by interleukin-1 beta injection were attenuated by treatment with magnolol. 6. The data suggest that magnolol decreases body temperature (due to increased heat loss and decreased heat production) by reducing 5-HT release in rat hypothalamus.  相似文献   

17.
Whether anaphylactic histamine release from rat peritoneal mast cells is influenced by betahistine, a histamine H1-receptor agonist/H3-antagonist, and dimaprit, an H2-agonist, was examined. Treatment with dimaprit at 6 and 60 microM for 20 min significantly inhibited the anaphylactic histamine release, whereas betahistine at up to 80 microM under the same conditions did not affect it. Treatment with dimaprit at 6 and 60 microM for 1 to 20 min and for 5 to 20 min, respectively, caused a time-dependent inhibition of the release, but up to 30 min treatment with 8 and 80 microM betahistine had no effect. The decreased histamine release induced by dimaprit was recovered by neither mepyramine nor cimetidine. However, thioperamide, an H3-selective antagonist, dose-dependently restored the diminished release. From these results, the inhibition of anaphylactic histamine release by dimaprit is not produced by the stimulation of H2-receptors, but involves the stimulation of H3-like receptors or H3-subtype receptors, which are distinct from the H3-receptors located in brain, and suggests that the receptor plays an important role in the negative feedback regulation of histamine release.  相似文献   

18.
The effects of (R)alpha-methylhistamine and N alpha-methylhistamine on intestinal transit were examined in mice. The passage of a charcoal meal in the gastrointestinal tract was dose dependently inhibited by N alpha-methylhistamine (1-20 mg/kg i.p.), but not by a selective H3 receptor agonist (R)alpha-methyl-histamine (1-50 mg/kg i.p.). The inhibitory effect of N alpha-methylhistamine (20 mg/kg) was attenuated by pretreatment with H1 receptor antagonists (mepyramine 5 mg/kg i.p. or 5 micrograms i.c.v. and triprolidine 5 mg/kg i.p.), but not by cimetidine (10 mg/kg i.p.), zolantidine (5 mg/kg i.p.), a brain-penetrating H2 receptor antagonist, or thioperamide (5 mg/kg i.p.), a selective H3 receptor antagonist. The effect of N alpha-methylhistamine was also attenuated by combined treatment with phentolamine and propranolol (5 and 15 mg/kg s.c., respectively) and by pretreatment with 6-hydroxydopamine (20 mg/kg i.p., 2 days before). N alpha-Methylhistamine markedly decreased histamine turnover in the mouse brain. These findings suggest that intestinal transit is inhibited by N alpha-methylhistamine via stimulation of central H1 but not H3 receptors and that stimulation of the sympathetic system is involved in this effect.  相似文献   

19.
Experiments were performed to characterize the pharmacology of Sch 50971 ((+)-trans-4-(4(R)-methyl-3(R)-pyrolidinyl)-1H-imidazole dihydrochloride, CAS 167610-28-8), a novel histamine H3 receptor agonist. The activity of Sch 50971 was compared with that of (R)-alpha-methylhistamine (CAS 75614-87-8), a potent and moderately selective agonist of histamine H3 receptors, in a series of in vitro and in vivo assays. Sch 50971 is a high affinity, selective H3 receptor agonist in vitro and in vivo. Sch 50971 inhibits [3H]-N-alpha-methylhistamine (CAS 673-50-7) binding to the histamine H3 receptor in human brain (Ki = 5.0 nmol/l) and guinea pig brain (Ki = 2.5 nmol/l). Sch 50971 also inhibits electric field stimulated guinea pig ileum contractions (pD2 = 7.47) and decreases [3H]-norepinephrine (CAS 51-41-2) release (pD2 = 7.48) from guinea pig pulmonary artery by activation of presynaptic inhibitory H3 receptors. The in vitro effects of Sch 50971 are antagonized by low concentrations of a selective H3 antagonist, thioperamide (CAS 106243-16-7). Sch 50971 has low affinity (IC50's > 10 mumol/l) for histamine H1, dopamine D1 and D2, serotonin 5-HT2 and muscarinic cholinergic receptors. It also does not exhibit histamine H2-antagonist activity. In guinea pigs and cats, Sch 50971 exhibits in vivo H3 agonist activity. Sch 50971 inhibits sympathetic hypertension evoked by stimulation of the medulla oblongata in anesthetized guinea pigs (ED30 = 0.3 mg/kg i.v., ED30 = 1.0 mg/kg i.d.). Sch 50971 also inhibits the effects of sympathetic nerve stimulation on nasal resistance in cats. In these assays, Sch 50971 exhibits an efficacy and potency comparable to H3-agonist (R)-alpha-methylhistamine. However, under in vivo conditions, Sch 50971 does not exhibit histamine H1-mediated responses that are seen with (R)-alpha-methylhistamine at doses close to those that produce H3 effects. Therefore, Sch 50971 is a novel, potent and selective agonist of histamine H3 receptors with an improved in vitro and in vivo receptor profile selectivity compared with (R)-alpha-methylhistamine.  相似文献   

20.
Colony forming unit of granulocytes and macrophages from peripheral blood (PB CFU-GM) represents stem and/or progenitor cells from human blood. In this paper, the effects of histamine H2 receptor agonist 4-methylhistamine (4-MH) and its antagonist ranitidine (Ranit) on the growth of PB CFU-GM cultured in methylcellulose system were studied and their differential effects on normal PB CFU-GM and leukemic HL-60 cells were compared with the effect of the antineoplastic agent cytosine arabinoside (Ara-C). It was found that the histamine H2 receptor agonist 4-MH stimulated the growth of PB CFU-GM when 4-MH was added at the concentrations from 10(-9) mol.L-1 to 10(-6) mol.L-1 among which the dose 10(-8) mol.L-1 exerted most potent stimulating effect (the PB CFU-GM colony numbers was 137.68% +/- 8.20% vs the control, P < 0.01). In contrast, the antagonist Ranit showed inhibitory effect on the growth of PB CFU-GM when at the concentrations 10(-9)-10(-5) mol.L-1 cultured for 14 d in the same methylcellulose system. The inhibition rate was 23.73% +/- 1.16% (10(-9) mol.L-1) and 41.42% +/- 6.75% (10(-6) mol.L-1), respectively. Although both Ranit and Ara-C could inhibit the growth of PB CFU-GM in vitro, Ranit exerted much greater inhibition on HL-60 leukemic cells than on normal PB CFU-GM at the dose of 10(-6) mol.L-1 (100% inhibition for HL-60 and < 50% inhibition for PB CFU-GM). However, the inhibition rate of Ara-C for both HL-60 and PB CFU-GM was 100% at the intensive chemotherapeutic dose of 10(-5) mol.L-1. It would appear that the histamine H2 receptor agonist 4-MH possesses stimulating effect on the growth of PB CFU-GM similar to its effect on CFU-GM from bone marrow as documented before. It is suggested that the histamine H2 receptor antagonist Ranit has, to some extent, potential in the treatment of myeloid leukemia, especially when combined with antineoplastic agent Ara-C at suboptimal doses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号