首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of vanadia-titania (V-Ti) xerogel catalysts were prepared by nonhydrolytic sol-gel method. These catalysts showed much higher surface area and total pore volumes than the conventional V2O5-TiO2 xerogel. Two species of surface vanadium in the xerogel catalysts were identified by Raman measurements: monomeric vanadyl and polymeric vanadates. The selective oxidation of hydrogen sulfide in the presence of excess water and ammonia was studied over these catalysts. Xerogel catalysts from the nonhydrolytic method showed very high conversion of H2S without harmful emission of SO2. The conversion of H2S increased with increasing vanadia loading up to 10V-Ti; however, it decreased at higher vanadia loading (12V-Ti and 18V-Ti) probably due to the formation of crystalline V2O5.  相似文献   

2.
We present a reduced-graphene-oxide (rGO)-supported V2O5-WO3-TiO2 (VWTi) catalysts for the efficient selective catalytic reduction of NOx. The rGO support provides well-dispersed functional sites for the nucleation of nanoparticles, allowing the formation of VWTi catalysts with high specific surface areas. The dispersion of the nanoparticles, as observed by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS), confirmed the uniform dispersion of the particles on the rGO surface. Detailed Fourier-transform infrared (FT-IR) and NH3 temperature-programmed desorption (NH3-TPD) analyses indicated that the high density of acidic sites provided by the rGO is key to the observed enhancement of NOx removal efficiency, and the rGO-supported catalysts exhibit improved NOx removal efficiencies with smaller amounts of V2O5 and WO3 compared with the commercially available V2O5-WO3-TiO2 catalysts.  相似文献   

3.
Vanadium oxide supported on zirconia modified with WO3 was prepared by adding Zr(OH)4 powder into a mixed aqueous solution of ammonium metavanadate and ammonium metatungstate followed by drying and calcining at high temperatures. The characterization of prepared catalysts was performed by using FTIR, Raman, and XRD. In the case of calcination temperature at 773 K, for samples containing low loading V2O5 below 18 wt%, vanadium oxide was in a highly dispersed state, while for samples containing high loading V2O5 equal to or above 18 wt%, vanadium oxide was well crystallized due to the high V2O5 loading on the surface of ZrO2. The ZrV2O7 compound was formed through the reaction of V2O5 and ZrO2 at 873 K, and the compound decomposed into V2O5 and ZrO2 at 1,073 K, these results were confirmed by FTIR and XRD. Catalytic tests for 2-propanol dehydration and cumene dealkylation have shown that the addition of WO3 to V2O5/ZrO2 enhanced both catalytic activity and acidity of V2O5-WO3/ZrO2 catalysts. The variations in catalytic activities for both reactions are roughly correlated with the changes of acidity.  相似文献   

4.
The catalytic oxidation of hydrogen sulfide (H2S) to elemental sulfur was studied over CeO2-TiO2 catalysts. The synthesized catalysts were characterized by various techniques such as X-ray diffraction, BET, X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption of ammonia, and scanning electron microscopy (SEM). Catalytic performance studies of the CeO2-TiO2 catalysts showed that H2S was successfully converted to elemental sulfur without considerable emission of sulfur dioxide. CeO2-TiO2 catalysts with Ce/Ti=1/5 and 1/3 exhibited the highest H2S conversion, possibly due to the uniform dispersion of metal oxides, high surface area, and high amount of acid sites.  相似文献   

5.
CO2 reforming of CH4 was performed using Ni catalyst supported on La-hexaaluminate which has been an well-known material for high-temperature combustion. La-hexaaluminate was synthesized by sol-gel method at various conditions where different amount of Ni (5–20 wt%) was loaded. Ni/La-hexaaluminate experienced 72 h reaction and its catalytic activity was compared with that of Ni/Al2O3, Ni/La-hexaaluminate shows higher reforming activity and resistance to coke deposition compared to the Ni/Al2O3 model catalyst. Coke deposition increases proportionally to Ni content. Consequently, Ni(5)/La-hexaaluminate(700) is the most efficient catalyst among various Ni/La-hexaaluminate catalysts regarding the cost of Ni in Ni(X)/La-hexaaluminate catalysts. BET surface area, XRD, EA, TGA and TPO were performed for surface characterization. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

6.
An Al2O3-ZrO2 xerogel (AZ-SG) was prepared by a sol-gel method for use as a support for a nickel catalyst. The Ni/AZ-SG catalyst was then prepared by an impregnation method, and was applied to hydrogen production by steam reforming of LNG. A nickel catalyst supported on commercial alumina (A-C) was also prepared (Ni/A-C) for comparison. The hydroxyl-rich surface of the AZ-SG support increased the dispersion of nickel species on the support during the calcination step. The formation of a surface nickel aluminate-like phase in the Ni/AZ-SG catalyst greatly enhanced the reducibility of the Ni/AZ-SG catalyst. The ZrO2 in the AZ-SG support increased the adsorption of steam onto the support and the subsequent spillover of steam from the support to the active nickel sites in the Ni/AZ-SG catalyst. Both the high surface area and the well-developed mesoporosity of the Ni/AZ-SG catalyst improved the gasification of adsorbed surface hydrocarbons in the reaction. In the steam reforming of LNG, the Ni/AZ-SG catalyst showed a better catalytic performance than the Ni/A-C catalyst. Moreover, the Ni/AZ-SG catalyst showed strong resistance toward catalyst deactivation.  相似文献   

7.
The selective oxidation of hydrogen sulfide containing excess water and ammonia was studied over vanadium oxide-based catalysts. The investigation was focused on the role of V2O5, and phase cooperation between V2O5 and Bi2O3 in this reaction. The conversion of H2S continued to decrease since V2O5 was gradually reduced by treatment with H2S. The activity of V2O5 was recovered by contact with oxygen. A strong synergistic phenomenon in catalytic activity was observed for the mechanically mixed catalysts of V2O5 and Bi2O3. Temperature-programmed reduction (TPR) and oxidation (TPO) and two bed reaction tests were performed to explain this synergistic effect by the reoxidation ability of Bi2O3. This paper is dedicated to Professor Wha Young Lee on the occasion of his retirement from Seoul National University.  相似文献   

8.
Several systems of HZSM-5, FeHZSM-5 and CrHZSM-5 zeolite catalysts with different ratios of SiO2/Al2O3 (25,38,50,80, and 150) were prepared and they were characterized by means of X-ray diffraction (XRD), UV–Vis, NH3-TPD and BET techniques. The results indicated that, compared with uncalcined HZSM-5 zeolites, the total acid amounts, acidic site density and acidic strength of HZSM-5, FeHZSM-5 and CrHZSM-5 zeolite catalysts obviously decreased, while those of weak acid amounts obviously enhanced with the decrease of SiO2/Al2O3 molar ratio. When the ratio of SiO2/Al2O3 is less than 50, the three systems of HZSM-5, FeHZSM-5 and CrHZSM-5 zeolite catalysts with same ratio of SiO2/Al2O3 gave similar and high isobutane conversions. However, when the ratio of SiO2/Al2O3 was equal to or greater than 80, these three systems of catalysts possessed different altering tendencies of isobutane conversions, thus their isobutene conversions were different. High yields of light olefins were obtained over the FeHZSM-5 and CrHZSM-5 zeolite catalysts with high ratio of SiO2/Al2O3 (≥80). The ratio of SiO2/Al2O3 has large effects on the surface area, and acidic characteristics of HZSM-5, FeHZSM-5 and CrHZSM-5 zeolites catalysts, and thus further affect their catalytic performances for isobutane cracking. That is the nature of SiO2/Al2O3 ratio effect on the catalytic performances.  相似文献   

9.
The V/MgO catalysts with different V2O5 loadings were prepared by impregnating MgO with aqueous vanadyl sulfate solution. All of the catalysts were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). It was observed that the H2S removal capacity with respect to vanadia content increased up to 6 wt%, and then decreased with further increase in vanadia loading. The prepared catalysts had BET surface areas of 11.3 ~ 95.9 m2/g and surface coverages of V2O5 of 0.1 ~ 2.97. The surface coverage calculation of V2O5 suggested that a vanadia addition up to a monomolecular layer on MgO support increased the H2S removal capacity of V/MgO, but the further increase of VO x surface coverage rather decreased that. Raman spectroscopy showed that the small domains of Mg3(VO4)2 could be present on V/MgO with less than 6 wt% vanadia loading. The crystallites of bulk Mg3(VO4)2 and Mg2(V2O7) became evident on V/MgO catalysts with vanadia loading above 15 wt%, which were confirmed by a XRD. The TPR experiments showed that V/MgO catalysts with the loading below 6 wt% V2O5 were more reducible than those above 15 wt% V2O5. It indicated that tetrahedrally coordinated V5+ in well-dispersed Mg3(VO4)2 domains could be the active species in the H2S wet oxidation. The XPS studies indicated that the H2S oxidation with V/MgO could proceed from the redox mechanism (V5+ V4+) and that V3+ formation, deep reduction, was responsible for the deactivation of V/MgO.  相似文献   

10.
The selective oxidation of hydrogen sulfide in the presence of excess water and ammonia was investigated by using vanadium-bismuth based mixed oxide catalysts. Synergistic effect on catalytic activity was observed for the mechanical mixtures of V-Bi-O and Sb2O4. Temperature programmed oxidation (TPO), X-ray photoelectron spectroscopy (XPS), and two separated bed reactivity test results supported the role of Sb2O4 for reoxidizing the reduced V-Bi-O during the reaction. This paper is dedicated to Professor Hyun-Ku Rhee on the occasion of his retirement from Seoul National University.  相似文献   

11.
The maximization of the total surface area of Pt-SnO2/Al2O3 catalyst was studied by using the Taguchi method of experimental design. The catalysts were prepared by sol-gel method. The effects of HNO3, H2O and aluminum nitrate concentrations and the stirring rate on the total surface area were studied at three levels of each. L9 orthogonal array leading nine experiments was used in the experimental design. The parameter levels that give maximum total surface area were determined and experimentally verified. In the range of conditions studied it was found that, medium levels of HNO3 and H2O concentration and lower levels of aluminum nitrate concentration and stirring rate maximize the total surface area.  相似文献   

12.
We investigated the correlation between vanadium surface density and VOx structure species in the selective catalytic reduction of NOx by NH3. The properties of the VOx/TiO2 catalysts were investigated using physicochemical measurements, including BET, XRD, Raman spectroscopy, FE-TEM, UV-visible DRS, NH3-TPD, H2-TPR, O2-On/Off. Catalysts were prepared using the wet impregnation method by supporting 1.0-3.0 wt% vanadium on TiO2 thermally treated at various calcination temperatures. Through the above analysis, we found that VOx surface density was 3.4 VOx/nm2, and the optimal V loading amounts were 2.0-2.5 wt% and the specific surface area was 65-80m2/g. In addition, it was confirmed that the optimal VOx surface density and formation of vanadium structure species correlated with the reaction activity depending on the V loading amounts and the specific surface area size.  相似文献   

13.
TiO2-Al2O3 mixed oxides with different compositions ranging from 40wt-% to 95wt-% of TiO2 were prepared by sol-gel method and impregnated with different amounts of VO x . Supports and catalysts were characterized by X-ray diffraction (XRD), physisorption, temperature preprogrammed reduction (H2-TPR), and ammonia temperature programmed desorption (NH3-TPD). TiO2 content in the support had obvious effect on the crystal structure, texture characteristic, acid property, and catalytic activity in dehydrogenation of ethylbenzene (EB) with carbon dioxide. The highest catalytic activity was acquired when the TiO2 content was 50 wt-%.  相似文献   

14.
In this paper the effect of the vanadium oxide loading on the surface vanadia structure and the activity as well as selectivity in the catalytic reduction of NO with NH3 was studied for a V2O5/TiO2 model system. A series of TiO2 (WO x stabilized anatase) supported vanadia catalysts with varying loadings were characterized by laser Raman spectroscopy, 51V MAS-NMR, V K XANES. To determine the acidic properties, DRIFTS measurements were done with pyridine adsorbed on the samples. The measurements indicate that with increasing active phase loading square pyramidal coordinated surface vanadia species are replaced by an amorphous highly dispersed vanadium oxide phase with a coordination like V2O5. In addition, the ratio of Brønsted to Lewis acid sites is shifted from a comparatively low to an equal level at high loadings. This structural change is accompanied by a clearly improved catalytic activity and selectivity.  相似文献   

15.
Vanadium oxide supported on mesoporous zirconium phosphate catalysts has been synthesized, characterized and tested in the selective oxidation of H2S to sulfur. The nature of the vanadium species depends on the V-loading of catalyst. Catalysts with a V-content lower than 4wt% present both isolated vanadium species and V2O5 crystallites. However, V2O5 crystallites have been mainly observed in catalysts with higher V-content, although the presence of isolated V-species on the surface of the metal oxide support cannot be completely ruled out. The catalytic behaviour also depends on V-loading of catalysts. Thus, while the catalytic activity of catalysts can be related to the number of V-sites, the catalyst decay is clearly observed in samples with low V-loading. The characterization of catalysts after the catalytic tests indicates the presence of sulfur on the catalyst, which is favoured on catalysts with low V-loading. However, a clear transformation of V2O5 to V4O9 can be proposed according to XRD and Raman results of used catalysts with high V-loading. The importance of V5+–O–V4+ pairs in activity and selectivity is also discussed.  相似文献   

16.
The direct preparation of V-Ti solid solution alloy by coreduction of V2O5 and TiO2 with Al in an attritor mill was investigated. The reduction of V2O5 with Al is highly exothermic, whereas reduction of TiO2 with Al is not sufficiently exothermic for a self-sustaining reaction. A range of compositions of a mixture of V2O5 and TiO2 can be so chosen as to make the overall reduction of V2O5 and TiO2 with Al sufficiently exothermic for a self-sustaining reaction. Initial studies were done to identify the reaction products obtained by reducing V2O5 with Al. The reaction yielded the intermetallic phase (Al3V), V, and Al2O3. SEM images indicated melting and solidification of the phases, leading to agglomeration. Further experiments involved mixing appropriate amounts of TiO2 with V2O5 and reducing the mixture with Al. XRD data for products showed the presence of V, V5Al8, and Al2O3. X-Ray Florescence (XRF) analysis and energy dispersive analyzer (EDAX) of SEM sample images indicated the formation of V-Ti solid solution. Microstructure of the milled charges taken out prior to reaction initiation indicated morphology change in Al powder and agglomeration/segregation of reactants. As a result, the reaction of V2O5 with the excess Al at certain regions also promoted the formation of vanadium aluminide.  相似文献   

17.
In order to improve the photocatalytic decomposition activity of benzene, which has been regarded as a typical volatile organic compound in air, TiO2 catalysts modified with metals (Pt, Cu, and Fe) were prepared and tested. Certain correlations between the photocatalytic activities and the optical properties of those catalysts were also found and discussed by using UV-visible spectroscopy and a photoluminescence spectroscopy. Among the metal impregnated TiO2, the Pt impregnated TiO2 showed the best activity and it was even better than that of P-25 which is widely used in commercial applications. For the various metal impregnated TiO2 samples, certain proportional relationships were found between the observed photoluminescence values and photocatalytic activities. On the other hand, in UV-visible spectra for metal impregnated TiO2 samples, the transmittance value was reduced depending upon the loading of metals. It was thought that photocatalytic activity increases from initial reaction state because the number of photoexcited electrons, which exist at Pt surface augment due to the band gap energy change of Pt and TiO2 by sintering and light energy-absorbed electrons excited easily to conduction. In conclusion, it was confirmed that the enhanced photocatalytic activity for high metal loading on TiO2 is related with the high concentration of excited electrons, which could be monitored through UV-visible spectra.  相似文献   

18.
Perovskite LaCoO3 and perovskite-like LaSrCoO4 mixed oxides were prepared by polyglycol gel method, and their catalytic performance was compared for the selective oxidation of hydrogen sulfide in a stream containing excess amount of ammonia and water for the first time. These samples were investigated by using XRD, BET, O2-TPD and XPS. The catalytic activity and the selectivity to solid products (ammonium thiosulfate and elemental sulfur) of LaCoO3 were better than those of LaSrCoO4, and this is explained in terms surface contents of oxygen and cobalt, oxidation state of cobalt, and BET surface area.  相似文献   

19.
Information concerning the oxidation of o-xylene and naphthalene, the two main processes for producing phthalic anhydride, is updated and analyzed. New techniques for the preparation of catalysts, all based in the impregnation method and involving the control of parameters such as pH and ionic strength of solutions, are described; the performance of the resulting catalysts is compared with that of catalysts prepared by other methods. Sulfur-containing substances and promoters such as Ag, P, Nb, and Sb have been shown to enhance catalyst performance; studies of their effect on the surface area, acidic properties, and stabilization of the oxidation state of vanadium in supported V2O5 catalysts are described.

The latest attempts to correlate the physicochemical characteristics of the catalysts with their catalytic features are analyzed. FTIR, Raman spectroscopy, adsorption of bases, 51V-NMR, XRD, XPS, SIMS, and electrical conductivity have been used in the study of V2O5/TiO2 catalysts, allowing further understanding of the effects of the properties such as acidity and the state of oxidation of the surface. Particular emphasis has been given to the presence of VIV, which is thought to cause lower selectivity to phthalic anhydride.

For o-xylene oxidation, the formation of involatile by-products has been established as a secondary reaction, accounting for the poor carbon balances obtained under some experimental conditions. Involatile by-products, whose formation has been associated with the presence of strong acid sites, can adsorb on the catalyst surface, leading to deactivation, or undergo total combustion, acting as a source of CO2. Attempts to quantify and characterize those by-products are described.

The modeling of the reaction using both fixed- and fluidized-bed reactors, including the study of parameters such as the inlet temperature and the bath temperature, is analyzed. Models considering catalyst deactivation have been also developed; for o-xylene oxidation, deactivation has been associated with processes both reversible, such as changes in the oxidation state of vanadium, deposition of involatile compounds, and irreversible, such as structural changes, decrease in surface area, sintering, and variation of the promoter concentration at the catalyst surface.

The study of V2O5/TiO2 EUROCAT catalysts, involving a number of European laboratories, is reviewed, and their performance is compared with that of other V2O5/TiO2 catalysts.  相似文献   

20.
CO impedes the low temperature (<170 °C) oxidation of C3H6 on supported Pt. Supported Au catalysts are very effective in the removal of CO by oxidation, although it has little propene oxidation activity under these conditions. Addition of Au/TiO2 to Pt/Al2O3 either as a physical mixture or as a pre-catalyst removes the CO and lowers the light-off temperature (T 50) for C3H6 oxidation compared with Pt catalyst alone by ~54 °C in a feed of 1% CO, 400 ppm C3H6, 14% O2, 2% H2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号