首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A number of extracellular proteins contain cryptic inhibitors of angiogenesis. Endostatin is a 20 kDa C-terminal proteolytic fragment of collagen XVIII that potently inhibits endothelial cell proliferation and angiogenesis. Therapy of experimental cancer with endostatin leads to tumour dormancy and does not induce resistance. We have expressed recombinant mouse endostatin and determined its crystal structure at 1.5 A resolution. The structure reveals a compact fold distantly related to the C-type lectin carbohydrate recognition domain and the hyaluronan-binding Link module. The high affinity of endostatin for heparin is explained by the presence of an extensive basic patch formed by 11 arginine residues. Endostatin may inhibit angiogenesis by binding to the heparan sulphate proteoglycans involved in growth factor signalling.  相似文献   

2.
Crystal structure of the nucleosome core particle at 2.8 A resolution   总被引:7,自引:0,他引:7  
The X-ray crystal structure of the nucleosome core particle of chromatin shows in atomic detail how the histone protein octamer is assembled and how 146 base pairs of DNA are organized into a superhelix around it. Both histone/histone and histone/DNA interactions depend on the histone fold domains and additional, well ordered structure elements extending from this motif. Histone amino-terminal tails pass over and between the gyres of the DNA superhelix to contact neighbouring particles. The lack of uniformity between multiple histone/DNA-binding sites causes the DNA to deviate from ideal superhelix geometry.  相似文献   

3.
The crystal structure of horseradish peroxidase isozyme C (HRPC) has been solved to 2.15 A resolution. An important feature unique to the class III peroxidases is a long insertion, 34 residues in HRPC, between helices F and G. This region, which defines part of the substrate access channel, is not present in the core conserved fold typical of peroxidases from classes I and II. Comparison of HRPC and peanut peroxidase (PNP), the only other class III (higher plant) peroxidase for which an X-ray structure has been completed, reveals that the structure in this region is highly variable even within class III. For peroxidases of the HRPC type, characterized by a larger FG insertion (seven residues relative to PNP) and a shorter F' helix, we have identified the key residue involved in direct interactions with aromatic donor molecules. HRPC is unique in having a ring of three peripheral Phe residues, 142, 68 and 179. These guard the entrance to the exposed haem edge. We predict that this aromatic region is important for the ability of HRPC to bind aromatic substrates.  相似文献   

4.
The transsulfuration enzyme cystathionine gamma-synthase (CGS) catalyses the pyridoxal 5'-phosphate (PLP)-dependent gamma-replacement of O-succinyl-L-homoserine and L-cysteine, yielding L-cystathionine. The crystal structure of the Escherichia coli enzyme has been solved by molecular replacement with the known structure of cystathionine beta-lyase (CBL), and refined at 1.5 A resolution to a crystallographic R-factor of 20.0%. The enzyme crystallizes as an alpha4 tetramer with the subunits related by non-crystallographic 222 symmetry. The spatial fold of the subunits, with three functionally distinct domains and their quaternary arrangement, is similar to that of CBL. Previously proposed reaction mechanisms for CGS can be checked against the structural model, allowing interpretation of the catalytic and substrate-binding functions of individual active site residues. Enzyme-substrate models pinpoint specific residues responsible for the substrate specificity, in agreement with structural comparisons with CBL. Both steric and electrostatic designs of the active site seem to achieve proper substrate selection and productive orientation. Amino acid sequence and structural alignments of CGS and CBL suggest that differences in the substrate-binding characteristics are responsible for the different reaction chemistries. Because CGS catalyses the only known PLP-dependent replacement reaction at Cgamma of certain amino acids, the results will help in our understanding of the chemical versatility of PLP.  相似文献   

5.
The three-dimensional structure of the alpha-amylase from Tenebrio molitor larvae (TMA) has been determined by molecular replacement techniques using diffraction data of a crystal of space group P212121 (a=51.24 A; b=93.46 A; c=96.95 A). The structure has been refined to a crystallographic R-factor of 17.7% for 58,219 independent reflections in the 7.0 to 1.64 A resolution range, with root-mean-square deviations of 0.008 A for bond lengths and 1.482 degrees for bond angles. The final model comprises all 471 residues of TMA, 261 water molecules, one calcium cation and one chloride anion. The electron density confirms that the N-terminal glutamine residue has undergone a post-transitional modification resulting in a stable 5-oxo-proline residue. The X-ray structure of TMA provides the first three-dimensional model of an insect alpha-amylase. The monomeric enzyme exhibits an elongated shape approximately 75 Ax46 Ax40 A and consists of three distinct domains, in line with models for alpha-amylases from microbial, plant and mammalian origin. However, the structure of TMA reflects in the substrate and inhibitor binding region a remarkable difference from mammalian alpha-amylases: the lack of a highly flexible, glycine-rich loop, which has been proposed to be involved in a "trap-release" mechanism of substrate hydrolysis by mammalian alpha-amylases. The structural differences between alpha-amylases of various origins might explain the specificity of inhibitors directed exclusively against insect alpha-amylases.  相似文献   

6.
The crystallographic refinement of trichosanthin has been performed at 2.6 A resolution. The crystal and molecular structure of trichosanthin is described in detail in this paper. On summarizing the regularity of the amino acid sequences of eight kinds of ribosome inactivating proteins and combining with the crystal and molecular structure of trichosanthin, fifteen most conservative amino acid residues are analyzed. It is found that four most conservative polar amino acid residues Gln156, Glu160, Arg163 and Glu189 gather on the molecular surface on the boundary of the large and small domains, thus forming the active center of the protein molecule.  相似文献   

7.
The Saccharomyces cerevisiae ubiquitin-conjugating enzyme (UBC) Rad6 is required for several functions, including the repair of UV damaged DNA, damage-induced mutagenesis, sporulation, and the degradation of cellular proteins that possess destabilizing N-terminal residues. Rad6 mediates its role in N-end rule-dependent protein degradation via interaction with the ubiquitin-protein ligase Ubr1 and in DNA repair via interactions with the DNA binding protein Rad18. We report here the crystal structure of Rad6 refined at 2.6 A resolution to an R factor of 21.3%. The protein adopts an alpha/beta fold that is very similar to other UBC structures. An apparent difference at the functionally important first helix, however, has prompted a reassessment of previously reported structures. The active site cysteine lies in a cleft formed by a coil region that includes the 310 helix and a loop that is in different conformations for the three molecules in the asymmetric unit. Residues important for Rad6 interaction with Ubr1 and Rad18 are on the opposite side of the structure from the active site, indicating that this part of the UBC surface participates in protein-protein interactions that define Rad6 substrate specificity.  相似文献   

8.
9.
10.
Conotoxins are small, cysteine-rich peptides isolated from the venom of Conus spp. of predatory marine snails, which selectively target specific receptors and ion channels critical to the functioning of the neuromuscular system. alpha-Conotoxins PnIA and PnIB are both 16-residue peptides (differing in sequence at only two positions) isolated from the molluscivorous snail Conus pennaceus. In contrast to the muscle-selective alpha-conotoxin GI from Conus geographus, PnIA and PnIB block the neuronal nicotinic acetylcholine receptor (nAChR). Here, we describe the crystal structure of PnIB, solved at a resolution of 1.1 A and phased using the Shake-and-Bake direct methods program. PnIB crystals are orthorhombic and belong to the space group P212121 with the following unit cell dimensions: a = 14.6 A, b = 26.1 A, and c = 29.2 A. The final refined structure of alpha-conotoxin PnIB includes all 16 residues plus 23 solvent molecules and has an overall R-factor of 14.7% (R-free of 15.9%). The crystal structures of the alpha-conotoxins PnIB and PnIA are solved from different crystal forms, with different solvent contents. Comparison of the structures reveals them to be very similar, showing that the unique backbone and disulfide architecture is not strongly influenced by crystal lattice constraints or solvent interactions. This finding supports the notion that this structural scaffold is a rigid support for the presentation of important functional groups. The structures of PnIB and PnIA differ in their shape and surface charge distribution from that of GI.  相似文献   

11.
The evolutionarily conserved SNARE proteins and their complexes are involved in the fusion of vesicles with their target membranes; however, the overall organization and structural details of these complexes are unknown. Here we report the X-ray crystal structure at 2.4 A resolution of a core synaptic fusion complex containing syntaxin-1 A, synaptobrevin-II and SNAP-25B. The structure reveals a highly twisted and parallel four-helix bundle that differs from the bundles described for the haemagglutinin and HIV/SIV gp41 membrane-fusion proteins. Conserved leucine-zipper-like layers are found at the centre of the synaptic fusion complex. Embedded within these leucine-zipper layers is an ionic layer consisting of an arginine and three glutamine residues contributed from each of the four alpha-helices. These residues are highly conserved across the entire SNARE family. The regions flanking the leucine-zipper-like layers contain a hydrophobic core similar to that of more general four-helix-bundle proteins. The surface of the synaptic fusion complex is highly grooved and possesses distinct hydrophilic, hydrophobic and charged regions. These characteristics may be important for membrane fusion and for the binding of regulatory factors affecting neurotransmission.  相似文献   

12.
The periplasmic trimethylamine N-oxide (TMAO) reductase from the marine bacteria Shewanella massilia is involved in a respiratory chain, having trimethylamine N-oxide as terminal electron acceptor. This molybdoenzyme belongs to the dimethyl sulfoxide (DMSO) reductase family, but has a different substrate specificity than its homologous enzyme. While the DMSO reductases reduce a broad spectra of organic S-oxide and N-oxide compounds, TMAO reductase from Shewanella massilia reduces only TMAO as the natural compound. The crystal structure was solved by molecular replacement with the coordinates of the DMSO reductase from Rhodobacter sphaeroides. The overall fold of the protein structure is essentially the same as the DMSO reductase structures, organized into four domains. The molybdenum coordination sphere is closest to that described in the DMSO reductase of Rhodobacter capsulatus. The structural differences found in the protein environment of the active site could be related to the differences in substrate specificity of these enzymes. In close vicinity of the molybdenum ion a tyrosine residue is missing in the TMAO reductase, leaving a greater space accessible to the solvent. This tyrosine residue has contacts to the oxo groups in the DMSO reductase structures. The arrangement and number of charged residues lining the inner surface of the funnel-like entrance to the active site, is different in the TMAO reductase than in the DMSO reductases from Rhodobacter species. Furthermore a surface loop at the top of the active-site funnel, for which no density was present in the DMSO reductase structures, is well defined in the oxidized form of the TMAO reductase structure, and is located on the border of the funnel-like entrance of the active center.  相似文献   

13.
The rate-limiting step in cholesterol biosynthesis in mammals is catalyzed by 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, a four-electron oxidoreductase that converts HMG-CoA to mevalonate. The crystal structure of HMG-CoA reductase from Pseudomonas mevalonii was determined at 3.0 angstrom resolution by multiple isomorphous replacement. The structure reveals a tightly bound dimer that brings together at the subunit interface the conserved residues implicated in substrate binding and catalysis. These dimers are packed about a threefold crystallographic axis, forming a hexamer with 23 point group symmetry. Difference Fourier studies reveal the binding sites for the substrates HMG-CoA and reduced or oxidized nicotinamide adenine dinucleotide [NAD(H)] and demonstrate that the active sites are at the dimer interfaces. The HMG-CoA is bound by a domain with an unusual fold, consisting of a central alpha helix surrounded by a triangular set of walls of beta sheets and alpha helices. The NAD(H) is bound by a domain characterized by an antiparallel beta structure that defines a class of dinucleotide-binding domains.  相似文献   

14.
The crystal structure of an acidic scorpion neurotoxin, BmK M8, purified from Chinese scorpion Buthus martensii Karsch (BmK), has been determined by the molecular replacement method. It is the first structure of an acidic alpha-scorpion neurotoxin reported so far. The crystals adopt a symmetry of space group P2(1) and contain one molecule per asymmetric unit. The structure has been refined to an R factor of 18.1% using reflection data in the range of 8 to 1.85 A resolution, with standard deviations from ideal geometry of 0.017 A and 2.43 degrees for bond length and angle, respectively. The 12 residues at the C terminus with unknown sequence were determined by crystallographic refinement. The refined model shows that the structural core, consisting of a motif beta alpha beta beta, is similar to that of toxin II from Androctonus australis Hector (AaH II) or Variant 3 from Centruroides sculpturatus Ewing (CsE V3). The three conformationally variable loops protruding from this structural core are different from that of AaH II, and especially from that of CsE V3. Compared with the most potent and basic alpha-toxin AaH II, the BmK M8 is a relatively inactive toxin (1100 times less active than AaH II) with an unusually low isoelectric point (pI 5.3). Sequence alignment of the two toxins shows a difference of 26 residues (40.6%). Among them four basic or neutral residues in AaH II, namely Val10, Lys28, Val55 and Gly59, are changed to acidic glutamate in BmK M8. The residues Glu10, Glu28 and Glu55 of BmK M8 are located on a surface (Face B), opposite the "conserved hydrophobic surface" (Face A). The latter is a functionally important area proposed by Fontecilla-Camps et al. Our observations suggest that in addition to Face A, Face B may also be involved in the biological activity of scorpion toxins. The structure of BmK M8 shows an evident conformational change of the alpha-amino group at the N terminus and a deorganization of Arg2 caused by the mutation D53A. These structural changes may also be responsible for the weak toxicity of BmK M8. In association with the information from chemical modifications, a multisite binding mode for toxin-receptor interaction and three "toxic regions" in relevance to the binding process, including Face A, Face B and Site C, are proposed. Face A, mainly consisting of Tyr5, 35, 47, the alpha-amino group, Arg2 and Asp3, may be more essential for the binding. Face B, mainly comprising conserved residues Tyr14, 21, Lys28 and Val55, may contribute to the high efficacy of the binding process and substitutions by acidic residues in this area could strongly weaken the toxic activity. Site C, formed by Lys58 and Arg62 at the C terminus and Arg41 and Tyr42 from loop 38-44, may be involved in binding site specificity.  相似文献   

15.
The three-dimensional structure of Corynebacterium 2, 5-diketo-D-gluconic acid reductase A (2,5-DKGR A; EC 1.1.1.-), in complex with cofactor NADPH, has been solved by using x-ray crystallographic data to 2.1-A resolution. This enzyme catalyzes stereospecific reduction of 2,5-diketo-D-gluconate (2,5-DKG) to 2-keto-L-gulonate. Thus the three-dimensional structure has now been solved for a prokaryotic example of the aldo-keto reductase superfamily. The details of the binding of the NADPH cofactor help to explain why 2,5-DKGR exhibits lower binding affinity for cofactor than the related human aldose reductase does. Furthermore, changes in the local loop structure near the cofactor suggest that 2,5-DKGR will not exhibit the biphasic cofactor binding characteristics observed in aldose reductase. Although the crystal structure does not include substrate, the two ordered water molecules present within the substrate-binding pocket are postulated to provide positional landmarks for the substrate 5-keto and 4-hydroxyl groups. The structural basis for several previously described active-site mutants of 2,5-DKGR A is also proposed. Recent research efforts have described a novel approach to the synthesis of L-ascorbate (vitamin C) by using a genetically engineered microorganism that is capable of synthesizing 2,5-DKG from glucose and subsequently is transformed with the gene for 2,5-DKGR. These modifications create a microorganism capable of direct production of 2-keto-L-gulonate from D-glucose, and the gulonate can subsequently be converted into vitamin C. In economic terms, vitamin C is the single most important specialty chemical manufactured in the world. Understanding the structural determinants of specificity, catalysis, and stability for 2,5-DKGR A is of substantial commercial interest.  相似文献   

16.
Macrophage migration inhibitory factor (MIF) was the first cytokine to be described, but for 30 years its role in the immune response remained enigmatic. In recent studies, MIF has been found to be a novel pituitary hormone and the first protein identified to be released from immune cells on glucocorticoid stimulation. Once secreted, MIF counterregulates the immunosuppressive effects of steroids and thus acts as a critical component of the immune system to control both local and systemic immune responses. We report herein the x-ray crystal structure of human MIF to 2.6 angstrom resolution. The protein is a trimer of identical subunits. Each monomer contains two antiparallel alpha-helices that pack against a four-stranded beta-sheet. The monomer has an additional two beta-strands that interact with the beta-sheets of adjacent subunits to form the interface between monomers. The three beta-sheets are arranged to form a barrel containing a solvent-accessible channel that runs through the center of the protein along a molecular 3-fold axis. Electrostatic potential maps reveal that the channel has a positive potential, suggesting that it binds negatively charged molecules. The elucidated structure for MIF is unique among cytokines or hormonal mediators, and suggests that this counterregulator of glucocorticoid action participates in novel ligand-receptor interactions.  相似文献   

17.
Arcelin-1 is a glycoprotein from kidney beans (Phaseolus vulgaris) which displays insecticidal properties and protects the seeds from predation by larvae of various bruchids. This lectin-like protein is devoid of monosaccharide binding properties and belongs to the phytohemagglutinin protein family. The x-ray structure determination at 1.9-A resolution of native arcelin-1 dimers, which correspond to the functional state of the protein in solution, was solved using multiple isomorphous replacement and refined to a crystallographic R factor of 0.208. The three glycosylation sites on each monomer are all covalently modified. One of these oligosaccharide chains provides interactions with protein atoms at the dimer interface, and another one may act by preventing the formation of higher oligomeric species in the arcelin variants. The dimeric structure and the severe alteration of the monosaccharide binding site in arcelin-1 correlate with the hemagglutinating properties of the protein, which are unaffected by simple sugars and sugar derivatives. Sequence analysis and structure comparisons of arcelin-1 with the other insecticidal proteins from kidney beans, arcelin-5, and alpha-amylase inhibitor and with legume lectins, yield insights into the molecular basis of the different biological functions of these proteins.  相似文献   

18.
cis-Biphenyl-2,3-dihydrodiol-2,3-dehydrogenase (BphB) is involved in the aerobic biodegradation of polychlorinated biphenyls (PCBs). The crystal structure of the NAD+-enzyme complex was determined by molecular replacement and refined to an R-value of 17.9% at 2.0 A. As a member of the short-chain alcohol dehydrogenase/reductase (SDR) family, the overall protein fold and positioning of the catalytic triad in BphB are very similar to those observed in other SDR enzymes, although small differences occur in the cofactor binding site. Modeling studies indicate that the substrate is bound in a deep hydrophobic cleft close to the nicotinamide moiety of the NAD+ cofactor. These studies further suggest that Asn143 is a key determinant of substrate specificity. A two-step reaction mechanism is proposed for cis-dihydrodiol dehydrogenases.  相似文献   

19.
A molten globule-like state of hen egg-white lysozyme has been characterized in 25% aqueous hexafluoroacetone hydrate (HFA) by CD, fluorescence, NMR, and H/D exchange experiments. The far UV CD spectra of lysozyme in 25% HFA supports retention of native-like secondary structure while the loss of near UV CD bands are indicative of the overall collapse of the tertiary structure. The intermediate state in 25% HFA exhibits an enhanced affinity towards the hydrophobic dye, ANS, and a native-like tryptophan fluorescence quenching. 1-D NMR spectra indicates loss of native-like tertiary fold as evident from the absence of ring current-shifted 1H resonances. CD, fluorescence, and NMR suggest that the transition from the native state to a molten globule state in 25% HFA is a cooperative process. A second structural transition from this compact molten globule-like state to an "open" helical state is observed at higher concentrations of HFA (> or = 50%). This transition is characterized by a dramatic loss of ANS binding with a concomitant increase in far UV CD bands. The thermal unfolding of the molten globule state in 25% HFA is sharply cooperative, indicating a predominant role of side-chain-side-chain interactions in the stability of the partially folded state. H/D exchange experiments yield higher protection factors for many of the backbone amide protons from the four alpha-helices along with the C-terminal 3(10) helix, whereas little or no protection is observed for most of the amide protons from the triple-stranded antiparallel beta-sheet domain. This equilibrium molten globule-like state of lysozyme in 25% HFA is remarkably similar to the molten globule state observed for alpha-lactalbumin and also with the molten globule state transiently observed in the kinetic refolding experiments of hen lysozyme. These results suggest that HFA may prove generally useful as a structure modifier in proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号