首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atmospheric mercury species/fractions were measured near a chlor-alkali plant in Sweden during August 28 to September 4, 2001. The concentration of total gaseous mercury in the plume from the plant was measured using TEKRAN and GARDIS instruments. Gaseous elemental mercury was measured using a light detection and ranging (LIDAR) technique. From vertical LIDAR sweeps through the plume from the chlor-alkali plant mercury emission rates could be calculated. The concentrations of reactive gaseous mercury (RGM) in the plume and also inside the cell house were measured using annular KCl coated denuders. The RGM emission constitutes 0.5-1.0% of the total mercury emitted from the plant. The mercury concentration adsorbed on particles was measured as well as the mercury flux from soil. The data presented also include an intercomparison showing an excellent agreement between TEKRAN/GARDIS and LIDAR gaseous mercury measurements.  相似文献   

2.
A mercury-cell chlor-alkali plant operated in Estarreja (North-western Portugal) for 50 years causing widespread environmental contamination. Although production by this process ceased in 2002, mercury contamination from the plant remains significant. The main objective of this study was to investigate mercury impact on the nearby environment and potential risks to local population. To assess the level of contamination soil samples were collected from agricultural fields in the vicinity of the plant, extending the study by taking samples of the predominant vegetation suitable for animal and human consumption, water samples, and fish species from a nearby coastal lagoon, to gain a preliminary insight into the potential for contamination of the terrestrial and aquatic food web. To determine population exposure to mercury, hair samples were collected from local residents. Total mercury concentration in the 0-15 cm layer of soil was found to be highly variable, ranging between 0.010 and 91 mg kg− 1, although mercury contamination of soils was found to be restricted to a confined area. Lolium perenne roots contained between 0.0070 and 2.0 mg kg− 1, and there is evidence that root systems uptake mercury from the soil. Levels of mercury in the aerial parts of plants ranged between 0.018 and 0.98 mg kg− 1. It appears that plants with higher mercury concentration in soils and roots also display higher mercury concentration in leaves.Total mercury concentration in water samples ranged between 12 and 846 ng L− 1, all samples presenting concentrations below the maximum level allowable for drinking water defined in the Portuguese law (1.0 μg L− 1).Mercury levels in fish samples were below the maximum limit defined in the Portuguese law (0.5 mg kg− 1), ranging from 0.0040 to 0.24 mg kg− 1. Vegetables collected presented maximum mercury concentration of 0.17 mg kg− 1. In general, food is not contaminated and should not be responsible for major human exposure to the metal.Mercury determined in human hair samples (0.090-4.2 mg kg− 1; mean 1.5 mg kg− 1) can be considered within normal limits, according to WHO guidelines suggesting that it is not affecting the local population. Despite being subject to decades of mercury emissions, nowadays this pollutant is only found in limited small areas and must not constitute a risk for human health, should these areas be restricted and monitored.Considering the present data, it appears that the population from Estarreja is currently not being affected by mercury levels that still remain in the environment.  相似文献   

3.
OBJECTIVES: The objectives of the present study were to assess the relative impact of different pathways of environmental cadmium (Cd) exposure and to evaluate the contribution from locally produced vegetables and root crops to the total dietary intake of Cd. METHODS: Cadmium in urine was determined for 492 individuals living near a closed down battery factory in Sweden. For each individual we created an environmental exposure-index based on Cd emissions to ambient air and number of years living at various distances from the plant. This information as well as dietary data were collected via questionnaires. Samples of soil, carrots and/or potatoes were collected from 37 gardens and analysed for Cd concentration. RESULTS: Eating home grown vegetables/potatoes, environmental Cd-exposure-index, female gender, age above 30 years and smoking more than one pack of cigarettes daily for at least 10 years were found to be significantly associated with increased urine concentrations of Cd (UCd>1.0 nmol/mmol creatinine). We found a statistically significant relation between Cd in urine and environmental Cd-exposure-index in persons eating home grown vegetables/potatoes regularly. Cd concentrations in home grown carrots, potatoes and in garden soil were highest in the area closest to the factory. Daily consumption of potatoes and vegetables cultivated in the vicinity of the closed battery factory was estimated to increase Cd intake by 18-38%. CONCLUSION: The present study shows that consumption of locally grown vegetables and root crops was an important exposure pathway, in subjects living near a nickel-cadmium battery plant, whereas direct exposure via ambient air was less important.  相似文献   

4.
Mercury concentrations were determined in the epiphytic lichen Hypogymnia physodes along five transects starting from a chlor-alkali plant located at Dalhousie, New Brunswick, a landfill site and a nearby electricity generating station. Lichen samples were collected from white birch (Betula papyrifera) and spruce (Picea sp.) or balsam fir (Abies balsamea). Average lichen background mercury values were 0.088+/-0.005 microg/g from white birch and 0.148+/-0.046 microg/g from spruce trees, with a detection limit of 0.05 microg/g. The chlor-alkali plant and a power plant were identified, respectively, as a major source and a minor source of elevated mercury levels in lichens. At 125 m north-west of the New Brunswick Power plant, 0.28 microg/g Hg were found in Hypogymnia physodes from spruce trees, while at 250 m west (downwind) of the chlor-alkali plant, 3.66 microg/g of mercury were determined. High values, 0.98 microg/g in lichens from spruce trees and 0.79 microg/g in lichen samples from white birch were also measured at 125 m south of the chlor-alkali plant and decreased exponentially with distance. The sphere of influence of the chlor-alkali plant with respect to mercury deposition was estimated to extend 2.4-3.4 km from the plant. The mercury concentrations in Hypogymnia physodes collected from white birch were significantly lower than the concentrations in the same lichen from spruce trees in areas with elevated levels of mercury, but not in areas with low mercury levels. The magnitude of this difference dropped with distance from the source.  相似文献   

5.
We conducted a study within the framework of the interdisciplinary European Mercury Emission from Chloralkali Plants (EMECAP) project to assess exposure to mercury (Hg) and the contribution of Hg emissions from a mercury cell chloralkali plant to urinary mercury (U-Hg) in adults living near the plant. We collected data from questionnaires and first morning urine samples from 75 subjects living near the Tarnow plant in Poland and 100 subjects living in a reference area. Median U-Hg was 0.32 mug/g creatinine (microg/gC) and 0.20 microg/gC, respectively. The median U-Hg was also higher in the amalgam-free subjects living near the plant (0.26 microg/gC) than in the reference group (0.18 microg/gC), but no such association was found in a multivariate analysis. There was a statistically significant positive association between U-Hg and number of teeth with amalgams, a negative association with age and a tendency towards higher U-Hg in female subjects. In the amalgam-free subjects there were statistically significant effects of female sex and fish consumption, and a negative association with age. The additional long-term average air Hg concentration from the plant, based on EMECAP environmental measurements and modelling, was estimated to be 1-3.5 ng/m(3) for the residential study area and should have a very small effect on U-Hg. The other Hg emission sources such as coal combustion facilities located nearby should be taken into account in assessing the overall impact of air Hg on U-Hg in this area.  相似文献   

6.
The sources of lead exposure, soil, household dust, diet and ambient air near a former lead smeltery were studied. The blood lead level of small children was also determined. The aim of the study was to define, based primarily on blood lead measurements, whether children living in the contaminated area may be at risk. Within 500 m from the site of the smeltery, there were several areas where the Finnish limit value for soil Pb, i.e. 300 mg/kg, was exceeded. In the recently built areas, the surface soil has been replaced and soil remediation has taken place in schoolyards and the playgrounds of children's day-care centres. Lead content in household dust was clearly elevated in the contaminated areas. In approximately 20 years, after the smeltery was closed in 1984, the lead concentrations of the fruits and berries in local gardens have decreased to one-tenth. In some samples, the limit values are still exceeded. The lead concentration in ambient air is now 50 times lower than in the 1970s. The blood lead level of the children living in the area is slightly but statistically significantly higher than that of the children in the control areas. The critical blood lead level, i.e. 10 microg/100 ml, was not exceeded in any of the children examined. The average and maximum lead concentrations of 63 analysed blood samples were 2.2 and 5 microg/100 ml, respectively. In contrast, the average and maximum blood lead levels of school children in 1981 were 6.7 and 13.0 microg/100 ml, respectively. The risk reduction measures undertaken during the past 20 years are described.  相似文献   

7.
A prevalence study of anaemia was carried out amongst children, aged one to nine years, living near a lead smelter in Santo Amaro City, Northeast Brazil. It was found that the variation in haemoglobin levels was significantly associated with malnutrition and with the interaction between malnutrition and iron deficiency, but not with lead poisoning, iron deficiency, or hookworm infection, having allowed for the effects of age, area of residence, family per capita income and race. The effect of the interaction between malnutrition and iron deficiency on haemoglobin levels was most prominent amongst children aged one year and amongst those living in the most deprived area. The lack of demonstrable interaction between lead poisoning and iron deficiency in the causation of anaemia amongst these children is discussed.  相似文献   

8.
Snow samples have been collected in the French Alps in 1998, 1999 and 2000 in order to measure both total Hg (HgT) and reactive Hg (HgR). Concentrations of HgT were between 13 and 130 pg g(-1) and HgR concentrations were below the detection limit (approximately 0.8 pg g(-1)). Hg speciation in snow was evaluated on the basis of ionic complexation equilibrium with chloride, hydroxide, oxalate. The pH of the snow was found to be an important parameter for Hg speciation. For pH values near 3, HgC2O4 is predominant in snow samples except for snow strongly influenced by anthropogenic sources (in which case HgCl2 predominates). When pH > 4, Hg(OH)2 and HgOHCl are predominant. These latter pH values are observed for precipitation not influenced by anthropogenic sources but more by soil erosion, e.g. Saharan dusts. The knowledge of Hgr speciation in snow is a key question for understanding the mechanisms of transformation of these complexes in snow after precipitation.  相似文献   

9.
Arsenic is naturally associated with gold mineralisation and elevated in some soils and mine waste around historical gold mining activity in Victoria, Australia. To explore uptake, arsenic concentrations in children's toenail clippings and household soils were measured, and the microdistribution and speciation of arsenic in situ in toenail clipping thin sections investigated using synchrotron-based X-ray microprobe techniques. The ability to differentiate exogenous arsenic was explored by investigating surface contamination on cleaned clippings using depth profiling, and direct diffusion of arsenic into incubated clippings. Total arsenic concentrations ranged from 0.15 to 2.1 µg/g (n = 29) in clipping samples and from 3.3 to 130 µg/g (n = 22) in household soils, with significant correlation between transformed arsenic concentrations (Pearson's r = 0.42, P = 0.023) when household soil was treated as independent. In clipping thin sections (n = 2), X-ray fluorescence (XRF) mapping showed discrete layering of arsenic consistent with nail structure, and irregular arsenic incorporation along the nail growth axis. Arsenic concentrations were heterogeneous at 10 × 10 µm microprobe spot locations investigated (< 0.1 to 13.3 µg/g). X-ray absorption near-edge structure (XANES) spectra suggested the presence of two distinct arsenic species: a lower oxidation state species, possibly with mixed sulphur and methyl coordination (denoted As≈ III(-S, -CH3)); and a higher oxidation state species (denoted As≈ V(-O)). Depth profiling suggested that surface contamination was unlikely (n = 4), and XRF and XANES analyses of thin sections of clippings incubated in dry or wet mine waste, or untreated, suggested direct diffusion of arsenic occurred under moist conditions. These findings suggest that arsenic in soil contributes to some systemic absorption associated with periodic exposures among children resident in areas of historic gold mining activity in Victoria, Australia. Future studies are required to ascertain if adverse health effects are associated with current levels of arsenic uptake.  相似文献   

10.
A mercury-cell chlor-alkali plant operated in Pavlodar, Northern Kazakhstan, for 18 years and caused widespread contamination of the surrounding environment. Untreated wastewater from the plant was discharged to Lake Balkyldak, a shallow impounded lake without an outlet. The nearby River Irtysh was also suspected to be impacted by mercury (Hg) via the transport of contaminated groundwater. We took sediment and water samples from both aquatic systems, and also sampled soils along the shoreline of the lake and in the Irtysh flood plain. Sediments from Lake Balkyldak were found to be very heavily contaminated, with Hg concentrations in the surface layer reaching up to approximately 1500 mg kg(-1) near the wastewater outfall pipe. The contaminated lake sediments are prone to wind-driven resuspension and are acting as a strong source of Hg to the water column. Unfiltered lake water samples taken in shallow areas within 10-15 m from the shoreline contained from 0.11 microg Hg L(-1) in the less contaminated northern part of the lake to 1.39 microg L(-1) near the pollutant outfall in the south (up to 7.3 microg L(-1) on windy days). Sediments from the River Irtysh were only slightly impacted, with maximum Hg concentrations of 0.046 mg kg(-1) in the old river channel and 0.36 mg kg(-1) in floodplain oxbow lakes. In water samples from the River Irtysh, Hg was generally not detected, although trace concentrations (3 to 9 ng L(-1)) were found in some samples taken from oxbow lakes. We conclude that the river is not significantly impacted by Hg, but the highly contaminated Lake Balkyldak poses a threat and is in need of remediation. Potential remediation options for the lake are reviewed and are discussed in the context of experiences made at other Hg-contaminated sites.  相似文献   

11.
Concentrations of lead (Pb) in blood (B-Pb, geometric mean 34.6 micrograms l-1, n = 127) and inorganic arsenic (As) and its metabolites in urine (U-As, mean 5.1 micrograms/g creatinine, n = 35) did not differ between children living in a village close to a glassworks emitting both Pb and As and children living in a reference area. There was no significant effect on B-Pb and U-As related to parents working at the glassworks or consumption of domestically grown vegetables. Neither was there any significant effect upon B-Pb of sex, age, potentially lead-exposing hobbies, or consumption of canned foods. Boys had higher U-As than girls (5.8 vs 4.2 micrograms/g creatinine, p = 0.005), and there was a decrease with age (range 8.4-10.4 years, 27% per year, p = 0.01). Further, parental smoking habits had a significant effect on both B-Pb and U-As. In children of non-smoking parents the B-Pb was 30 micrograms l-1, in children with one parent who smoked 39 micrograms l-1 (smoking father 37, smoking mother 41 micrograms l-1) and in children with two parents who smoked 47 micrograms l-1 (p less than 0.001). The corresponding values for U-As were 4.2, 5.5, and 13 micrograms/g creatinine, respectively (p = 0.01).  相似文献   

12.
This study investigated the environmental impact and level of risk associated with mercury (Hg) contamination near a derelict chlor-alkali plant in Pavlodar, Northern Kazakhstan. Several species of fish were sampled from the highly polluted Lake Balkyldak and the nearby river Irtysh, to assess the extent of Hg bioaccumulation in the aquatic food chain and potential human health risks. A small number of bovine tissue samples, water samples, soil and plant samples from a nearby village were also investigated in order to make a preliminary assessment of potential impacts on the terrestrial food chain. Mercury levels in fish caught from Lake Balkyldak ranged from 0.16 to 2.2 mg kg(-1) and the majority of fish exceeded current human health criteria for Hg. Interspecies comparisons indicated that Hg is accumulated in the order dace>carp>tench. Site-specific bioaccumulation factors (BAF) were calculated for THg, and were estimated for MeHg. Fish from the river Irtysh and floodplain oxbow lakes contained between 0.075 and 0.159 mg kg(-1) of Hg and can be regarded as uncontaminated. Soils were found to be impacted by past atmospheric emissions of Hg. Cattle grazing in the surroundings of the factory are exposed to Hg from contaminated soils, plants and surface water, but the consumption of contaminated fish from the lake appears to be the main route of exposure for humans.  相似文献   

13.
Mercury distribution and speciation in Lake Balaton, Hungary   总被引:6,自引:0,他引:6  
The distribution and speciation of mercury in air, rain, lake water, sediment, and zooplankton in Lake Balaton (Hungary) were investigated between 1999 and 2002. In air, total gaseous mercury (TGM) ranged from 0.4 to 5.9 ng m(-3) and particulate phase mercury (PPM) from 0.01 to 0.39 ng m(-3). Higher concentrations of both TGM and PPM occurred during daytime. Higher concentrations of PPM occurred in winter. In rain and snow, total mercury ranged from 10.8 to 36.7 ng L(-1) in summer but levels up to 191 ng L(-1) in winter. Monomethylmercury (MMHg) concentrations ranged from 0.09 to 1.26 ng L(-1) and showed no seasonal variations. Total Hg in the unfiltered lake water varied spatially, with concentrations ranging from 1.4 to 6.5 ng L(-1). Approximately 70% of the total Hg is dissolved. MMHg levels ranged from 0.08 to 0.44 ng L(-1) as total and from 0.05 to 0.37 ng L(-1) in the dissolved form. Lower Hg concentrations in the water column occurred in winter. In suspended particulate matter and in sediment, total mercury ranged from 9 to 160 ng g(-1) dw, and MMHg ranged from 0.07 to 0.84 ng g(-1) dw. In zooplankton, an average mercury level of 31.0+/-6.8 ng g(-1) dw occurred, with MMHg accounting for approximately 17%. In sediments, suspended-matter- and zooplankton-high Hg and MMHg levels occurred at the mouth of the River Zala, but, in the lake, higher concentrations occurred on the Northern side, and an increasing trend from north-west to north-east was observed. In general, regarding Hg, Lake Balaton can be considered as a relatively uncontaminated site. The high-pH and well-oxygenated water as well as the low organic matter content of the sediment does not favour the methylation of Hg. In addition, bioconcentration and bioaccumulation factors are relatively low compared to other aquatic systems.  相似文献   

14.
As part of a study is to assess the importance of watersheds in controlling sources, transport, fate, and bioavailability of monomethyl mercury (MeHg) in Lake Superior, biotic samples were collected and analyzed to determine total mercury (HgT) and MeHg content, and to examine size, species, trophic and geographic trends. Plankton was collected in two ways: vertical tows of non-metallic, 153 microm mesh net (bulk zooplankton), and by passively filtering near-surface water through stacked Nitex sieves, generating size-fractionated seston (<35, 35-63, 63-112, and >112 microm). Benthos was sampled using a Ponar grab to collect sediment, and a non-metallic sieve to separate biota from substrate. Samples were processed to quantify dry weights, HgT and MeHg. Results for bulk zooplankton sampled offshore showed a range of approximately from 35 to 50 ng MeHg/gram dry weight (gdw) and from 80 to 130 ng HgT/gdw during April, and from 15 to 25 ng MeHg/gdw and from 20 to 70 ng HgT/gdw during August. Results from sieved, near-surface water from offshore sites in April showed a dominance by the <35 microm size fraction both in total mass and mass of MeHg compared to other size fractions. On a dry weight basis, however, we found little difference between the size fractions in April (MeHg ranges from 2 to 10 ng/gdw). During the summer cruise, we found similar concentrations in the <35 microm fraction, but higher in the 112-243 microm size fraction (MeHg 14-16 ng/gdw). The MeHg concentration in Mysis relicta ranged from 33 to 54 ng/gdw throughout the lake. Chironomid larvae were 8 ng MeHg/gdw and amphipods were 32 ng MeHg/gdw.  相似文献   

15.
Mercury emissions from a coal-fired power plant in Japan   总被引:1,自引:0,他引:1  
The emissions study for mercury was conducted at a 700 MW coal-fired plant for the combustion of three types of coal with mercury concentrations of 0.0063, 0.0367 and 0.065 mg/kg. The power plant is equipped with a cold-side electrostatic precipitator and wet type flue gas desulfurization system. During full load operation of the boilers, samples of the input and output streams such as coal, coal ash, ESP ash and post-ESP particulates and flue gas were collected. The Hg concentrations in solid were measured by cold-vapor atomic absorption spectrometry (AAS) after appropriate preparation and acid digestion. Gaseous Hg was collected using a mixed solution of potassium permanganate and sulfuric acid and the Hg concentrations in the samples were measured using cold-vapor AAS. The results were used to examine: (1) overall mass balances; (2) relative distribution in the power plant; (3) equilibrium of Hg species using MALT-2 calculation program; and (4) Hg concentrations in stack emissions. The mass balances estimated in this study were 100, 138 and 89%, respectively, for the coals. Total Hg concentrations in stack gas were 1.113, 0.422 and 0.712 microg(m3N), respectively, for the coals. More than 99.5% of the Hg in the stack emissions were in gaseous form and the proportion in particulate form was extremely low. The relative distribution of Hg in ESP, FGD and Stack ranged from 8.3 to 55.2%, 13.3 to 69.2% and 12.2% to 44.4%, respectively. The results indicated that factors other than the Hg concentration of coals and efficiency of pollution control devices might affect Hg emissions from coal-fired plant. The calculated equilibrium of the distribution of Hg species using the MALT2 program suggest that it is necessary to consider condensation mechanism to interpret the affect of Hg species on the variations of the removal efficiencies of Hg in the ESP.  相似文献   

16.
The distribution and speciation of mercury (Hg) in air, rain, and surface waters from the artificial tropical lake of Petit-Saut in French Guiana were investigated during the 2003/04 period. In the air, total gaseous mercury (TGM) at the dam station averaged 12+/-2 pmol m(-3) of which >98% was gaseous elemental mercury (GEM). GEM distribution depicted a day-night cycling with high concentrations (up to 15 pmol m(-3)) at dawn and low concentrations (down to 5 pmol m(-3)) at nightfall. Reactive gaseous mercury (RGM) represented <1% of the GEM with a mean concentration of 4+/-3 fmol m(-3). Diel RGM variations were negatively related to GEM. In the rain, the sum of all Hg species in the unfiltered (HgT(UNF)) averaged 16+/-12 pmol L(-1). Temporal distribution of HgT(UNF) exhibited a pattern of high concentrations during the late dry seasons (up to 57.5 pmol L(-1)) and low concentrations (down to 2.7 pmol L(-1)) in the course of the wet seasons. Unfiltered reactive (HgR(UNF)), dissolved gaseous (DGM) and monomethyl (MMHg(UNF)) Hg constituted 20, 5 and 5% of HgT(UNF), respectively. All measured Hg species were positively related and displayed negative relationships with the pH of the rain. In the reservoir surface waters, dissolved total mercury (HgT(D)) averaged 3.4+/-1.2 pmol L(-1) of which 10% consisted of DGM. DGM showed a trend of high concentrations during the dry seasons (480+/-270 fmol L(-1)) and lower (230+/-130 fmol L(-1)) in the course of the wet seasons. Diel variations included diurnal photo-induced DGM production (of about 60 fmol L(-1) h(-1)) coupled to minute to hour oxidation/reduction cycles (of >100 fmol L(-1) amplitude). Finally, calculated atmospheric Hg inputs to the Petit-Saut reservoir represented 14 mol yr(-1) whereas DGM evasion reached 23 mol yr(-1). Apportionment among forms of Hg deposition indicated that up to 75% of the total Hg invasive flux follows the rainfall pathway.  相似文献   

17.
Dissolved gaseous Hg, reactive Hg, total dissolved Hg and particulate Hg concentrations were measured in samples of majors tributaries of the Sepetiba Bay, SE Brazil (Itimirim, Itingu?u, Guarda, Guandu, S?o Francisco and Ita rivers), in dry and rainy seasons. The average Hg concentrations found varied from 0.02 to 0.18 ng L(-1) for dissolved gaseous Hg, from 0.1 to 18.1 ng L(-1) for reactive Hg, from 0.1 to 66.6 ng L(-1) for total dissolved Hg and from 0.3 to 250 ng L(-1) for particulate Hg. During the rainy season, a decrease in the dissolved Hg concentrations and an increase in the particulate Hg concentrations was observed. Positive correlations were found between the reactive Hg and the total dissolved Hg concentrations (r = 0.99), between the particulate Hg and TSS concentrations (r = 0.82) and between total Hg and particulate Hg concentrations (r = 0.95). The instantaneous Hg fluxes varied among rivers from 0.02 to 412 microgs(-1) for total dissolved Hg and from 0.03 to 12,572 microgs(-1) for particulate Hg. The log Kd varied from 3.76 to 6.43 and showed a significant increase in rainy season following an increase in particulate Hg and a decrease in dissolved Hg concentrations. These results suggest that erosion and runoff are the major pathways of Hg transport to rivers and eventually to Sepetiba Bay.  相似文献   

18.
Lead contents in hair, whole blood and saliva were determined for 245 healthy children (121 male, 124 female, age: 8-10 years) from three residential areas of Düsseldorf (North-Rhine-Westphalia, Germany) with different traffic densities. The geometric mean for the lead content in hair was found to be 0.87 microg/g (range: 0.2-9.9 microg/g) for the entire test group. While the levels of lead in hair in the suburban population were significantly lower than in the two city centre populations, no significant difference concerning the lead content in hair could be detected in the latter. The geometric mean for lead concentration in whole blood amounted to 25.0 microg/l (range: 8.0-154 microg/l). There was no significant difference between the sub-groups. The lead concentrations found in saliva were rather low (range: < 1.5-47.0 microg/l). Of the values, 89% were below the detection limit of 1.5 microg/l. Due to reduced levels of lead in fuel, the present study exposes that the amount of lead in the children examined has further decreased compared to preceding surveys. The correlation between the lead content in hair and the road traffic density was not corroborated by the findings with regard to amounts of lead found in blood, indicating that residual lead from fuel does not result in a substantial burden of lead found in the whole body. In contrast to levels of lead found in blood, levels of lead found in hair may be influenced more by environmental conditions. Saliva is not a suitable material for biological monitoring with respect to lead exposure in children.  相似文献   

19.
Arsenic speciation and distribution in an arsenic hyperaccumulating plant   总被引:31,自引:0,他引:31  
Arsenic-contaminated soil is one of the major arsenic sources for drinking water. Phytoremediation, an emerging, plant-based technology for the removal of toxic contaminants from soil and water, has been receiving renewed attention. Although a number of plants have been identified as hyperaccumulators for the phytoextraction of a variety of metals, and some have been used in field applications, no hyperaccumulator for arsenic had been previously reported until the recent discovery of Brake fern (Pteris vittata), which can hyperaccumulate arsenic from soils. This finding may open a door for phytoremediation of arsenic-contaminated soils. Speciation and distribution of arsenic in the plant can provide important information helpful to understanding the mechanisms for arsenic accumulation, translocation, and transformation. In this study, plant samples after 20 weeks of growth in an arsenic-contaminated soil were used for arsenic speciation and distribution study. A mixture of methanol/water (1:1) was used to extract arsenic compounds from the plant tissue. Recoveries of 85 to 100% were obtained for most parts of the plant (rhizomes, fiddle heads, young fronds and old fronds) except for roots, for which extraction efficiency was approximately 60%. The results of this study demonstrate the ability of Brake fern as an arsenic hyperaccumulator. It transfers arsenic rapidly from soil to aboveground biomass with only minimal arsenic concentration in the roots. The arsenic is found to be predominantly as inorganic species; and it was hypothesized that the plant uptakes arsenic as arsenate [As(V)I and arsenate was converted to arsenite [As(III)] within the plant. The mechanisms of arsenic uptake, translocation, and transformation by this plant are not known and are the objectives of our on-going research.  相似文献   

20.
Atmospheric Hg0 contamination and the potential risk of occupational exposure were evaluated in a chlor-alkali facility by the use of transplanted Tillandsia usneoides. This plant species was selected since it presents some features that makes it useful for air monitoring purposes. After short-term exposure (15 days), control plants showed a mean concentration of 0.2 μg Hg.g−1 whereas Hg values in transplants ranged from 1 to 10 400 μg.g−1. This latter value was observed near an elemental Hg spillage. Even after exposure to toxic conditions plant metabolism was still operative, allowing the transplant technique to be employed to assess both Hg taken up through the stomata and Hg associated with particles deposited on the biomonitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号