首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 86 毫秒
1.
In the preceding paper Fontanilla and Nuccitelli (Biophysical Journal 75:2079-2087 (1998)) present detailed measurements of the shape and speed of the fertilization Ca2+ wave in Xenopus laevis eggs. In order to help interpret their results, we develop here a computational technique based on the finite element method that allows us to carry out realistic simulations of the fertilization wave. Our simulations support the hypothesis that the physiological state of the mature egg is bistable, i.e., that its cytoplasm can accommodate two alternative physiological Ca2+ concentrations: a low concentration characteristic of the prefertilization state and a greatly elevated concentration characteristic of the state following the passage of the wave. We explore this hypothesis by assuming that the bistability is due to the release and re-uptake properties of the endoplasmic reticulum (ER) as determined by inositol trisphosphate (IP3) receptor/Ca2+ channels and sarcoendoplasmic reticulum calcium ATPase (SERCA) pumps. When combined with buffered diffusion of Ca2+ in the cytoplasm, our simulations show that inhomogeneities in the Ca2+ release properties near the plasma membrane are required to explain the temporal and spatial dependences of the shape and speed of these waves. Our results are consistent with an elevated IP3 concentration near the plasma membrane in the unfertilized egg that is augmented significantly near the site of fertilization. These gradients are essential in determining the concave shape of the Ca2+ fertilization wave front.  相似文献   

2.
Punctate releases of Ca2+, called Ca2+ sparks, originate at the regular array of t-tubules in cardiac myocytes and skeletal muscle. During Ca2+ overload sparks serve as sites for the initiation and propagation of Ca2+ waves in myocytes. Computer simulations of spark-mediated waves are performed with model release sites that reproduce the adaptive Ca2+ release observed for the ryanodine receptor. The speed of these waves is proportional to the diffusion constant of Ca2+, D, rather than D, as is true for reaction-diffusion equations in a continuous excitable medium. A simplified "fire-diffuse-fire" model that mimics the properties of Ca2+-induced Ca2+ release (CICR) from isolated sites is used to explain this saltatory mode of wave propagation. Saltatory and continuous wave propagation can be differentiated by the temperature and Ca2+ buffer dependence of wave speed.  相似文献   

3.
Inositol 1,4,5-trisphosphate (IP3) [corrected] binding to its receptors (IP3R) in the endoplasmic reticulum (ER) activates Ca2+ release from the ER lumen to the cytoplasm, generating complex cytoplasmic Ca2+ concentration signals including temporal oscillations and propagating waves. IP3-mediated Ca2+ release is also controlled by cytoplasmic Ca2+ concentration with both positive and negative feedback. Single-channel properties of the IP3R in its native ER membrane were investigated by patch clamp electrophysiology of isolated Xenopus oocyte nuclei to determine the dependencies of IP3R on cytoplasmic Ca2+ and IP3 concentrations under rigorously defined conditions. Instead of the expected narrow bell-shaped cytoplasmic free Ca2+ concentration ([Ca2+]i) response centered at approximately 300 nM-1 microM, the open probability remained elevated (approximately 0.8) in the presence of saturating levels (10 microM) of IP3, even as [Ca2+]i was raised to high concentrations, displaying two distinct types of functional Ca2+ binding sites: activating sites with half-maximal activating [Ca2+]i (Kact) of 210 nM and Hill coefficient (Hact) approximately 2; and inhibitory sites with half-maximal inhibitory [Ca2+]i (Kinh) of 54 microM and Hill coefficient (Hinh) approximately 4. Lowering IP3 concentration was without effect on Ca2+ activation parameters or Hinh, but decreased Kinh with a functional half-maximal activating IP3 concentration (KIP3) of 50 nM and Hill coefficient (HIP3) of 4 for IP3. These results demonstrate that Ca2+ is a true receptor agonist, whereas the sole function of IP3 is to relieve Ca2+ inhibition of IP3R. Allosteric tuning of Ca2+ inhibition by IP3 enables the individual IP3R Ca2+ channel to respond in a graded fashion, which has implications for localized and global cytoplasmic Ca2+ concentration signaling and quantal Ca2+ release.  相似文献   

4.
Increases in the intracellular free calcium concentration are of great importance to the initiation of development in deuterostomes. Their involvement has not yet been clearly defined in protostomes. We used endogenous ligands (IP3, cADPR, ryanodine and NAADP) and pharmacological agents (thapsigargin [Tg], thimerosal, caffeine and heparin) to study smooth endoplasmic reticulum Ca2+ pump and release mechanisms in eggs of an annelid, Chaetopterus. Oocyte homogenates effectively sequestered Ca2+ and released it in response to IP3 in a concentration-dependent manner. Repeated additions of IP3 were unable to cause further release. Heparin inhibited Ca2+ release in response to IP3. The homogenates also released Ca2+ in response to thimerosal, and this release was sensitive to heparin. Two antibodies to IP3 receptors recognized an appropriate band in Chaetopterus egg lysates. These results indicate that the oocytes possess type-1 IP3-gated Ca2+ channels. Neither calcium itself, nor strontium, cADPR, ryanodine, caffeine nor NAADP released appreciable Ca2+. At low concentrations, Tg caused a slow release of Ca2+; at higher concentrations, it elicited a rapid release. Release of Ca2+ by Tg activated development. Since one theory of fertilization invokes the introduction of a Ca2+ releasing soluble protein into the egg upon sperm-egg fusion, we also tested whether soluble extracts of Chaetopterus sperm could stimulate Ca2+ release in Chaetopterus egg homogenates. There was no Ca2+ release when the sperm extract was added to the homogenate; however, homogenates exposed to sperm extract became refractory to IP3. Thus, Ca2+ release at fertilization in these oocytes occurs through IP3-gated channels.  相似文献   

5.
Stimulation of human submandibular gland cells with carbachol, inositol trisphosphate (IP3), thapsigargin, or tert-butylhydroxyquinone induced an inward current that was sensitive to external Ca2+ concentration ([Ca2+]e) and was also carried by external Na+ or Ba2+ (in a Ca2+-free medium) with amplitudes in the order Ca2+ > Ba2+ > Na+. All cation currents were blocked by La3+ and Gd3+ but not by Zn2+. The IP3-stimulated current with 10 microM 3-deoxy-3-fluoro-D-myo-inositol 1,4,5-triphosphate and 10 mM 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid in the pipette solution, showed 50% inactivation in <5 min and >5 min with 10 and 1 mM [Ca2+]e, respectively. The Na+ current was not inactivated, whereas the Ba2+ current inactivated at a slower rate. The protein kinase inhibitor, staurosporine, delayed the inactivation and increased the amplitude of the current, whereas the protein Ser/Thr phosphatase inhibitor, calyculin A, reduced the current. Thapsigargin- and tert-butylhydroxyquinone-stimulated Ca2+ currents inactivated faster. Importantly, these agents accelerated the inactivation of the IP3-stimulated current. The data demonstrate that internal Ca2+ store depletion-activated Ca2+ current (ISOC) in this salivary cell line is regulated by a Ca2+-dependent feedback mechanism involving a staurosporine-sensitive protein kinase and the intracellular Ca2+ pump. We suggest that the Ca2+ pump modulates ISOC by regulating [Ca2+]i in the region of Ca2+ influx.  相似文献   

6.
Depletion of endoplasmic reticulum Ca2+ stores induces Ca2+ entry from the extracellular space by a process termed "store-operated Ca2+ entry" (SOCE). It has been suggested that the novel fungal metabolite adenophostin-A may be able to stimulate Ca2+ entry without stimulating Ca2+ release from stores. To test this idea further, we compared Ca2+ release, SOCE, and the stimulation of Ca2+-activated Cl- currents in Xenopus oocytes in response to inositol 1,4,5-trisphosphate (IP3) and adenophostin-A injection. IP3 stimulated an outward Cl- current, ICl1-S, in response to Ca2+ release from stores followed by an inward current, ICl2, in response to SOCE. In contrast, low concentrations of adenophostins (AdAs) activated ICl2 without activating ICl1-S, consistent with the suggestion that AdA can activate Ca2+ entry without stimulating Ca2+ release. However, when Ca2+ entry has been stimulated by AdA, Ca2+ stores are largely depleted of Ca2+, as assessed by the inability of ionomycin to release additional Ca2+. The Ca2+ release stimulated by AdA, however, was 7 times slower than the release stimulated by IP3, which could explain the minimal activation of ICl1-S; when Ca2+ is released slowly, the threshold level required for ICl1-S activation is not attained.  相似文献   

7.
The presence and distribution of intracellular Ca2+ release pathways in olfactory bulb neurons were studied in dissociated cell cultures. Histochemical techniques and imaging of Ca2+ fluxes were used to identify two major intracellular Ca2+ release mechanisms: inositol 1, 4,5-triphosphate receptor (IP3R)-mediated release, and ryanodine receptor-mediated release. Cultured neurons were identified by immunocytochemistry for the neuron-specificmarker beta-tubulin III. Morphometric analyses and immunocytochemistry for glutamic acid-decarboxylase revealed a heterogeneous population of cultured neurons with phenotypes corresponding to both projection (mitral/tufted) and intrinsic (periglomerular/granule) neurons of the in vivo olfactory bulb. Immunocytochemistry for the IP3R, and labeling with fluorescent-tagged ryanodine, revealed that, irrespective of cell type, almost all cultured neurons express IP3R and ryanodine binding sites in both somata and dendrites. Functional imaging revealed that intracellular Ca2+ fluxes can be generated in the absence of external Ca2+, using agonists specific to each of the intracellular release pathways. Local pressure application of glutamate or quisqualate evoked Ca2+ fluxes in both somata and dendrites in nominally Ca2+ free extracellular solutions, suggesting the presence of IP3-dependent Ca2+ release. These fluxes were blocked by preincubation with thapsigargin and persisted in the presence of the glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione. Local application of caffeine, a ryanodine receptor agonist, also evoked intracellular Ca2+ fluxes in the absence of extracellular Ca2+. These Ca2+ fluxes were suppressed by preincubation with ryanodine. In all neurons, both IP3- and ryanodine-dependent release pathways coexisted, suggesting that they interact to modulate intracellular Ca2+ concentrations.  相似文献   

8.
Free Ca2+ was measured in intracellular stores of individual mouse pancreatic beta-cells using dual-wavelength microfluorometry and the low-affinity Ca2+ indicator furaptra. Controlled permeabilization of the plasma membrane with 4 micromol/l digitonin revealed that 22% of the furaptra was trapped in intracellular nonnuclear compartments. When 3 mmol/l ATP and 200 nmol/l Ca2+ were simultaneously present, this cation rapidly accumulated in the organelle pool, reaching an average concentration of 200-500 micromol/l. Whereas agents affecting the mitochondrial function (5 mmol/l succinate, 2 micromol/l ruthenium red, or 10 micromol/l antimycin A + 2 microg/ml oligomycin) had little effects, the Ca2+-ATPase inhibitor thapsigargin released 92% of the Ca2+ mobilizable with the ionophore Br-A23187. Digital imaging revealed regional differences in the organelle Ca2+. The regions with the highest Ca2+ concentration were particularly responsive to inositol 1,4,5-trisphosphate (IP3). IP3 mobilized Ca2+ in a dose-dependent way with half-maximal and maximal effects at about 1 and 5 micromol/l, respectively. High concentrations of IP3 released about half of the thapsigargin-sensitive Ca2+, but there were no responses to agents known to activate ryanodine receptors, such as 10 mmol/l caffeine, 0.1-1 micromol/l ryanodine, or 1-5 micromol/l cyclic ADP ribose. The results reinforce the concept that mobilization of intracellular Ca2+ in the pancreatic beta-cell is mediated by IP3 receptors rather than ryanodine receptors.  相似文献   

9.
Mechanisms and function of intercellular calcium signaling   总被引:3,自引:0,他引:3  
Intercellular Ca2+ waves initiated by mechanical or chemical stimuli propagate between cells via gap junctions. The ability of a wide diversity of cells to display intercellular Ca2+ waves suggests that these Ca2+ waves may represent a general mechanism by which cells communicate. Although Ca2+ may permeate gap junctions, the intercellular movement of Ca2+ is not essential for the propagation of Ca2+ waves. The messenger that moves from one cell to the next through gap junctions appears to be IP3 and a regenerative mechanism for IP3 may be required to effect multicellular communication. Extracellularly mediated Ca2+ signaling also exists and this could be employed to supplement or replace gap junctional communication. The function of intercellular Ca2+ waves may be the coordination of cooperative cellular responses to local stimuli.  相似文献   

10.
OBJECTIVE: IP3-induced Ca2+ release from the intracellular stores plays a role in the production of vasoactive substances in the endothelium. In many cells, Ca2+ release is accompanied by an inward movement of K+ whose function may be to dissipate the potential difference created by the loss of positive charge from the internal stores. The existence of such a mechanism in endothelial cells was investigated. METHODS: Using saponin-permeabilised bovine aortic endothelial (BAE) cells, the effects of K+ on the IP3-induced 45Ca2+ release were investigated. RESULTS: Replacement of K+ with NMG inhibited IP3 (3 microM)-induced 45Ca2+ release by 55%. The ability of other ions to allow IP3-induced 45Ca2+ release was found to be K+ = Na+ > Cs+ > Rb+ > Co2+. The K+ channel blockers TEA, 4AP and 3,4-DAP were found to significantly inhibit IP3-induced 45Ca2+ release by 16%, 36% and 27%, respectively. CONCLUSIONS: The data suggest that Ca2+ release from intracellular stores is partly dependent on a movement of K+ through K+ channels in the store membranes. In contrast, 9AA (400 microM) and substitution with Co2+ abolished the response. Therefore, K+ is important for IP3-induced 45Ca2+ release, but other ions are also likely to act as counter-ions. 9AA and Co2+ probably act on sites other than those involving ER monovalent cation channels. The possibility that a counter-ion system plays a role in the activation of endothelial cells is discussed.  相似文献   

11.
To investigate the presence and the size of different non-mitochondrial Ca2+ pools of Ehrlich ascites tumor cells (EATCs), digitonin-permeabilized cells were allowed to accumulate Ca2+ in the presence of mitochondrial inhibitors and treated with the reticular Ca(2+)-ATPase inhibitor thapsigargin, IP3 and the Ca2+ ionophore A23187. Emptying of thapsigargin-sensitive Ca2+ stores prevented any Ca2+ release by IP3, and, after IP3 addition, little or no Ca2+ was released by thapsigargin. In both instances, a further Ca2+ release was accomplished by A23187. The IP3-thapsigargin-sensitive pool and the residual A23187-sensitive one corresponded to approximately 60 and 37% of non-mitochondrial stored Ca2+, respectively. In intact EATCs, IP3-dependent agonists and thapsigargin discharged Ca2+ pools almost completely overlapping, and A32187 released a minor residual Ca2+ pool. The IP3-insensitive pool appeared to have a relatively low affinity for Ca2+ (below 600 nM). The high affinity, IP3-sensitive Ca2+ pool was discharged in a 'quantal' manner following step additions of sub maximal [IP3], and the IP3-induced fractional Ca2+ release was more marked at higher concentrations of stored (luminal) Ca2+, The IP3-sensitive Ca2+ pool appeared to be devoid of the Ca(2+)-activated Ca2+ release channel since caffeine did not released any Ca2+ in intact and permeabilized EATCs, and Western blot analyses of EATC microsomal membranes failed to detect any known ryanodine receptor isoform.  相似文献   

12.
BACKGROUND: Ca2+ waves allow effective delivery of intracellular Ca2+ signals to cytosolic targets. Propagation of these regenerative Ca2+ signals probably results from the activation of intracellular Ca2+ channels by the increase in cytosolic [Ca2+] that follows the opening of these channels. Such positive feedback is potentially explosive. Mechanisms that limit the spontaneous opening of intracellular Ca2+ channels are therefore likely to have evolved in parallel with the mechanism of Ca2+-induced Ca2+ release. RESULTS: Maximal rates of 45Ca2+ efflux from permeabilised hepatocytes superfused with medium in which the [Ca2+] was clamped were cooperatively stimulated by inositol 1,4,5-trisphosphate (IP3). A minimal interval of approximately 400 msec between IP3 addition and the peak rate of Ca2+ mobilisation indicate that channel opening does not immediately follow binding of IP3. Although the absolute latency of Ca2+ release was unaffected by further increasing the IP3 concentration, it was reduced by increased [Ca2+]. CONCLUSIONS: We propose that the closed conformation of the IP3 receptor is very stable and therefore minimally susceptible to spontaneous activation; at least three (probably four) IP3 molecules may be required to provide enough binding energy to drive the receptor into a stable open conformation. We suggest that a further defence from noise is provided by an extreme form of coincidence detection. Binding of IP3 to each of its four receptor subunits unmasks a site to which Ca2+ must bind before the channel can open. As IP3 binding may also initiate receptor inactivation, there may be only a narrow temporal window during which each receptor subunit must bind both of its agonists if the channel is to open rather than inactivate.  相似文献   

13.
Earthworm shock secretion contains a 20-kDa vomeronasally mediated chemoattractive protein for garter snakes. Both the ligand-receptor binding and the chemoattractivity of ES20 are Ca(2+)-dependent. When ES20 binds to its G-protein-coupled receptors in the vomeronasal epithelium, the inositol 1,4,5-trisphosphate (IP3) level is increased, but the level of cAMP is reduced. Furthermore, forskolin-stimulated levels of cAMP are completely blocked by ES20-receptor binding or by Ca2+ alone and the effect of calcium ions can be nullified by EGTA. Previously, we hypothesized that the decrease in cAMP was due to activation of a Ca(2+)-dependent phosphodiesterase. In the present study, we provide evidence that the decrease in cAMP is due mainly to the regulation of adenylate cyclase (AC) activity by Ca2+ or is indirectly mediated by ES20. Results obtained with intact vomeronasal sensory epithelium suggest that the binding of ES20 to its receptors facilitates generation of IP3 which mobilizes intracellularly sequestered Ca2+, resulting in an increase of cystosolic Ca2+. A further increase in cytosolic Ca2+ occurs through Ca2+ influx from extracellular sources. Garter snake vomeronasal AC does not require calmodulin for its activity and shows a biphasic response to increasing concentrations of Ca2+; its activity is modulated both positively and negatively by this bivalent cation.  相似文献   

14.
Outward current oscillations associated with transient membrane hyperpolarizations were induced in murine macrophage polykaryons by membrane depolarization in the absence of external Na+. Oscillations corresponded to a cyclic activation of Ca(2+)-dependent K+ currents (IKCa) probably correlated with variations in intracellular Ca2+ concentration. Addition of external Na+ (8 mM) immediately abolished the outward current oscillations, suggesting that the absence of the cation is necessary not only for their induction but also for their maintenance. Oscillations were completely blocked by nisoldipine. Ruthenium red and ryanodine reduced the number of outward current cycles in each episode, whereas quercetin prolonged the hyperpolarization 2- to 15-fold. Neither low molecular weight heparin nor the absence of a Na+ gradient across the membrane had any influence on oscillations. The evidence suggests that Ca2+ entry through a pathway sensitive to Ca2+ channel blockers is elicited by membrane depolarization in Na(+)-free medium and is essential to initiate oscillations, which are also dependent on the cyclic release of Ca2+ from intracellular Ca(2+)-sensitive stores; Ca2+ ATPase acts by reducing intracellular Ca2+, thus allowing slow deactivation of IKCa. Evidence is presented that neither a Na+/Ca2+ antiporter nor Ca2+ release from IP3-sensitive Ca2+ stores participate directly in the mechanism of oscillation.  相似文献   

15.
In pancreatic acinar cells low (physiological) agonist concentrations evoke cytosolic Ca2+ spikes specifically in the apical secretory pole that contains a high density of secretory (zymogen) granules (ZGs). Inositol 1,4,5-trisphosphate (IP3) is believed to release Ca2+ from the endoplasmic reticulum, but we have now tested whether the Ca(2+)-releasing messengers IP3 and cyclic ADP-ribose (cADPr) can liberate Ca2+ from AGs. In experiments on single isolated ZGs, we show using confocal microscopy that IP3 and cADPr evoke a marked decrease in the free intragranular Ca2+ concentration. Using a novel high resolution method, we have measured changes in the Ca2+ concentration in the vicinity of an isolated AG and show that IP3 and cADPr cause rapid Ca2+ release from the granule, explaining the agonist-evoked cytosolic Ca2+ rise in the secretory pole.  相似文献   

16.
Prior treatment of NG108-15 cells with phosphatase inhibitors including okadaic acid and calyculin A inhibited the elevation of cytosolic Ca2+ concentration ([Ca2+]i) induced by bradykinin by approximately 63%. This inhibition was dependent on the concentration of okadaic acid with an IC50 of 0.15 nM. Okadaic acid treatment only lowered the maximal response of [Ca2+]i increase and had no effect on the EC50 value for bradykinin regardless of the presence of extracellular Ca2+. Neither the capacity of 45Ca2+ accumulation within intracellular nonmitochondrial Ca2+ stores nor the magnitude of [Ca2+]i increase induced by thapsigargin was reduced by the treatment of okadaic acid. In contrast, the same phosphatase inhibitor treatment inhibited the bradykinin-evoked inositol 1,4,5-trisphosphate (IP3) generation, the Mn2+ influx, and the capacity of mitochondrial Ca2+ accumulation. Furthermore, the sensitivity of IP3 in the Ca2+ release was suppressed by okadaic acid pretreatment. Our results suggest that the reduction of bradykinin-induced [Ca2+]i rise by the promotion of protein phosphorylation was attributed to the reduced activity of phospholipase C, the decreased sensitivity to IP3, and the slowed rate of Ca2+ influx. Thus, phosphorylation plays a role in bradykinin-sensitive Ca2+ signaling cascade in NG108-15 cells.  相似文献   

17.
Microinjection of inositol 1,4,5-trisphosphate (InsP3) into intact skeletal muscle fibers isolated from frogs (Rana temporaria) increased resting cytosolic Ca2+ concentration ([Ca2+]i) as measured by double-barreled Ca2+-selective microelectrodes. In contrast, microinjection of inositol 1-phosphate, inositol 1,4-biphosphate, and inositol 1,4,5,6-tetrakisphosphate did not induce changes in [Ca2+]i. Incubation in low-Ca2+ solution, or in the presence of L-type Ca2+ channel blockers did not affect InsP3-induced release of cytosolic Ca2+. Neither ruthenium red, a blocker of ryanodine receptor Ca2+-release channels, nor cytosolic Mg2+, a known inhibitor of the Ca2+-induced Ca2+-release process, modified the InsP3-induced release of cytosolic Ca2+. However, heparin, a blocker of InsP3 receptors, inhibited InsP3-induced release of cytosolic Ca2+. Also, pretreatment with dantrolene or azumulene, two inhibitors of cytosolic Ca2+ release, reduced [Ca2+]i, and prevented InsP3 from inducing release of cytosolic Ca2+. Incubation in caffeine or lengthening of the muscle increased [Ca2+]i and enhanced the ability of InsP3 to induce release of cytosolic Ca2+. These results indicate that InsP3, at physiological concentrations, induces Ca2+ release in intact muscle fibers, and suggest that the InsP3-induced Ca2+ release is regulated by [Ca2+]i. A Ca2+-dependent effect of InsP3 on cytosolic Ca2+ release could be of importance under physiological or pathophysiological conditions associated with alterations in cytosolic Ca2+ homeostasis.  相似文献   

18.
We study the propagation of intracellular calcium waves in a model that features Ca2+ release from discrete sites in the endoplasmic reticulum membrane and random spatial distribution of these sites. The results of our simulations qualitatively reproduce the experimentally observed behavior of the waves. When the level of the channel activator inositol trisphosphate is low, the wave undergoes fragmentation and eventually vanishes at a finite distance from the region of initiation, a phenomenon we refer to as an abortive wave. With increasing activator concentration, the mean distance of propagation increases. Above a critical level of activator, the wave becomes stable. We show that the heterogeneous distribution of Ca2+ channels is the cause of this phenomenon.  相似文献   

19.
The increase in cytosolic free Ca2+ concentration ([Ca2+]i) seen in submandibular cells of early postnatal rats following exposure to acetylcholine (ACh) is larger than in cells of adult rats. To elucidate possible reasons for this difference, we compared Ca2+ movements through Ca2+ pumps in both types of cells using Ca(2+)-sensitive fluorescent probe fura-2 and the radiotracer 45Ca2+. Ca2+ release induced by endoplasmic reticulum (ER) Ca(2+)-pump inhibitor thapsigargin (TG) was significantly smaller in neonatal cells than in adult cells, whereas the inositol 1,4,5-trisphosphate (IP3)-elicited Ca2+ release was comparable in both cell types. This suggests that although the size of the IP3-sensitive Ca2+ pool is adequate in immature cells, the activity of TG-sensitive Ca2+ pump in this pool is lower. The activity of the plasma membrane (PM) Ca(2+)-pump, measured by extrusion of 45Ca2+, was also significantly lower in immature cells. These results indicate that both ER and PM Ca2+ pumps may be functionally underdeveloped in immature cells, and that the enhanced increase of [Ca2+]i seen in response to ACh in immature cells may be partially, if not completely, due to a reduced capacity for removal of Ca2+ from the cytosol by active mechanisms.  相似文献   

20.
Cyclic ADP-ribose (cADPR), a novel putative messenger of the ryanodine receptor, was examined regarding its ability to mobilize Ca2+ from intracellular Ca2+ stores in isolated cells of parotid and submandibular glands of the dog. cADPR induced a rapid and transient Ca2+ release in the digitonin-permeabilized cells of salivary glands. cADPR-induced Ca2+ release was inhibited by ryanodine receptor antagonists ruthenium red, ryanodine, benzocaine, and imperatoxin inhibitor but not by the inositol 1,4,5-trisphosphate (IP3)-receptor antagonist heparin. Thapsigargin, at a concentration of 3 to 30 microM, inhibited IP3-induced Ca2+ release, while higher concentrations were required to inhibit cADPR-induced Ca2+ release. Cross-potentiation was observed between cADPR and ryanodine or SrCl2, suggesting that cADPR sensitizes the Ca2+-induced Ca2+ release mechanism. Cyclic AMP plays a stimulatory role on cADPR- and IP3-induced Ca2+ release in digitonin-permeabilized cells. Calmodulin also potentiated cADPR-induced Ca2+ release, but inhibited IP3-induced Ca2+ release. Acetylcholine and ryanodine caused the rise in intracellular free Ca2+ concentration ([Ca2+]i) in intact submandibular and parotid cells. Caffeine did not produce any increase in Ca2+ release or [Ca2+]i rise in any preparation. ADP-ribosyl cyclase activity was found in the centrifuged particulate fractions of the salivary glands. These results suggest that cADPR serves as an endogenous modulator of Ca2+ release from Ca2+ pools through a caffeine-insensitive ryanodine receptor channel, which are different from IP3-sensitive pools in canine salivary gland cells. This system is positively regulated by cyclic AMP and calmodulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号