首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes a 2 GHz active variable gain low noise amplifier (VGLNA) in a 0.18-μm CMOS process. The VGLNA provides a 50-Ω input impedance and utilizes a tuned load to provide high selectivity. The VGLNA achieves a maximum small signal gain of 16.8 dB and a minimum gain of 4.6 dB with good input return loss. In the high gain and the low gain modes, the NFs are 0.83 dB and 2.8 dB, respectively. The VGLNA’s IIP3 in the high gain mode is 2.13 dBm. The LNA consumes approximately 4 mA of current from a 1.8-V power supply.  相似文献   

2.
A 3-5 GHz broadband flat gain differential low noise amplifier (LNA) is designed for the impulse radio uitra-wideband (IR-UWB) system. The gain-flatten technique is adopted in this UWB LNA. Serial and shunt peaking techniques are used to achieve broadband input matching and large gain-bandwidth product (GBW). Feedback networks are introduced to further extend the bandwidth and diminish the gain fluctuations. The prototype is fabricated in the SMIC 0.18 μm RF CMOS process. Measurement results show a 3-dB gain bandwidth of 2.4-5.5 GHz with a maximum power gain of 13.2 dB. The excellent gain flatness is achieved with ±0.45 dB gain fluctuations across 3-5 GHz and the minimum noise figure (NF) is 3.2 dB over 2.5-5 GHz. This circuit also shows an excellent input matching characteristic with the measured S11 below-13 dB over 2.9-5.4 GHz. The input-referred 1-dB compression point (IPldB) is -11.7 dBm at 5 GHz. The differential circuit consumes 9.6 mA current from a supply of 1.8 V.  相似文献   

3.
正A monolithic RF transceiver for an MB-OFDM UWB system in 3.1-4.8 GHz is presented.The transceiver adopts direct-conversion architecture and integrates all building blocks including a gain controllable wideband LNA,a I/Q merged quadrature mixer,a fifth-order Gm-C bi-quad Chebyshev LPF/VGA,a fast-settling frequency synthesizer with a poly-phase filter,a linear broadband up-conversion quadrature modulator,an active D2S converter and a variablegain power amplifier.The ESD protected transceiver is fabricated in Jazz Semiconductor's 0.18-μm RF CMOS with an area of 6.1 mm~2 and draws a total current of 221 mAfrom 1.8-V supply.The receiver achieves a maximum voltage gain of 68 dB with a control range of 42 dB in 6 dB/step,noise figures of 5.5-8.8 dB for three sub-bands,and an inband /out-band IIP_3 better than-4 dBm/+9 dBm.The transmitter achieves an output power ranging from-10.7 to-3 dBm with gain control,an output P_(1dB) better than-7.7 dBm,a sideband rejection about 32.4 dBc,and LO suppression of 31.1 dBc.The hopping time among sub-bands is less than 2.05 ns.  相似文献   

4.
A monolithic RF transceiver for an MB-OFDM UWB system in 3.1-4.8 GHz is presented.The transceiver adopts direct-conversion architecture and integrates all building blocks including a gain controllable wideband LNA,a I/Q merged quadrature mixer,a fifth-order Gm-C bi-quad Chebyshev LPF/VGA,a fast-settling frequency synthesizer with a poly-phase filter,a linear broadband up-conversion quadrature modulator,an active D2S converter and a variablegain power amplifier.The ESD protected transceiver is fabricated in Jazz Semiconductor's 0.18-μm RF CMOS with an area of 6.1 mm2 and draws a total current of 221 mA from 1.8-V supply.The receiver achieves a maximum voltage gain of 68 dB with a control range of 42 dB in 6 dB/Step,noise figures of 5.5-8.8 dB for three sub-bands,and an inband/out-band IIP3 better than-4 dBm/+9 dBm.The transmitter achieves an output power ranging from-10.7 to-3dBm with gain control,an output P1dB better than-7.7 dBm,a sideband rejection about 32.4 dBc,and LO suppression of 31.1 dBc.The hopping time among sub-bands is less than 2.05 ns.  相似文献   

5.
正This paper presents a wideband low noise amplifier(LNA) for multi-standard radio applications.The low noise characteristic is achieved by the noise-canceling technique while the bandwidth is enhanced by gateinductive -peaking technique.High-frequency noise performance is consequently improved by the flattened gain over the entire operating frequency band.Fabricated in 0.18μm CMOS process,the LNA achieves 2.5 GHz of -3 dB bandwidth and 16 dB of gain.The gain variation is within±0.8 dB from 300 MHz to 2.2 GHz.The measured noise figure(NF) and average HP3 are 3.4 dB and -2 dBm,respectively.The proposed LNA occupies 0.39 mm2 core chip area.Operating at 1.8 V,the LNA drains a current of 11.7 mA.  相似文献   

6.
This paper presents a dual-band low noise amplifier for the receiver of a global navigation satellite system. The differences between single band and multi-band design methods are discussed.The relevant parameter analysis and the details of circuit design are presented.The test chip was implemented in a TSMC 0.18μm 1P4M RF CMOS process.The LNA achieves a gain of 16.8 dB/18.9 dB on 1.27 GHz/1.575 GHz.The measured noise figure is around 1.5-1.7 dB on both bands.The LNA consumes less than 4.3 mA of current ...  相似文献   

7.
正A 10-bit 50-MS/s reference-free low power successive approximation register(SAR) analog-to-digital converter(ADC) is presented.An energy efficient switching scheme is utilized in this design to obtain low power and high frequency operation performance without an additional analog power supply or on-chip/off-chip reference. An on-chip calibration DAC(CDAC) is implemented to cancel the offset of the latch-type sense amplifier(SA) to ensure precision whilst getting rid of the dependence on the pre-amplifier,so that the power consumption can be reduced further.The design was fabricated in IBM 0.18-μm 1P4M SOI CMOS process technology.At a 1.5-V supply and 50-MS/s with 5-MHz input,the ADC achieves an SNDR of 56.76 dB and consumes 1.72 mW,resulting in a figure of merit(FOM) of 61.1 fJ/conversion-step.  相似文献   

8.
A 3-5 GHz broadband flat gain differential low noise amplifier(LNA) is designed for the impulse radio ultra-wideband(IR-UWB) system.The gain-flatten technique is adopted in this UWB LNA.Serial and shunt peaking techniques are used to achieve broadband input matching and large gain-bandwidth product(GBW).Feedback networks are introduced to further extend the bandwidth and diminish the gain fluctuations.The prototype is fabricated in the SMIC 0.18μm RF CMOS process.Measurement results show a 3-dB gain band...  相似文献   

9.
A 2.4GHz 0.18μm CMOS gain-switched single-end Low Noise Amplifier(LNA) and a passive mixer with no external balun for near-zero-IF(Intermediate Frequency)/RF(Radio Frequency) applications are described.The LNA,fabricated in the 0.18μm 1P6M CMOS technology,adopts a gain-switched technique to increase the linearity and enlarge the dynamic range.The mixer is an IQ-based passive topology.Measurements of the CMOS chip are performed on the FR-4 PCB and the input is matched to 50Ω.Combining LNA and mixer,the front...  相似文献   

10.
A 2.4GHz 0.18μm CMOS gain-switched single-end Low Noise Amplifier (LNA) and a passive mixer with no external balun for near-zero-IF (Intermediate Frequency)/RF (Radio Frequency) applications are described. The LNA, fabricated in the 0.18μm 1P6M CMOS technology, adopts a gain-switched technique to increase the linearity and enlarge the dynamic range. The mixer is an IQ-based passive topology. Measurements of the CMOS chip are performed on the FR-4 PCB and the input is matched to 50Ω. Combining LNA and mixer, the front-end measured performances in high gain state are: -15dB of Sll, 18.5dB of voltage gain, 4.6dB of noise figure, 15dBm of IIP3, 85dBm to -10dBm dynamic range. The full circuit drains 6mA from a 1.8V supply.  相似文献   

11.
正This paper presents a broadband Gilbert low noise mixer implemented with noise cancellation technique operating between 10 MHz and 0.9 GHz.The Gilbert mixer is known for its perfect port isolation and bad noise performance.The noise cancellation technique of LNA can be applied here to have a better NF.The chip is implemented in SMIC 0.18μm CMOS technology.Measurement shows that the proposed low noise mixer has a 13.7-19.5 dB voltage gain from 10 MHz to 0.9 GHz,an average noise figure of 5 dB and a minimum value of 4.3 dB.The core area is 0.6 x 0.45 mm~2.  相似文献   

12.
A low power 3-5 GHz CMOS UWB receiver front-end   总被引:1,自引:0,他引:1  
A novel low power RF receiver front-end for 3-5 GHz UWB is presented. Designed in the 0.13μm CMOS process, the direct conversion receiver features a wideband balun-coupled noise cancelling transconductance input stage, followed by quadrature passive mixers and transimpedance loading amplifiers. Measurement results show that the receiver achieves an input return loss below -8.5 dB across the 3.1-4.7 GHz frequency range, maximum voltage conversion gain of 27 dB, minimum noise figure of 4 dB, IIP3 of -11.5 dBm, and IIP2 of 33 dBm. Working under 1.2 V supply voltage, the receiver consumes total current of 18 mA including 10 mA by on-chip quadrature LO signal generation and buffer circuits. The chip area with pads is 1.1 × 1.5 mm^2.  相似文献   

13.
A new,low complexity,ultra-wideband 3.1-10.6 GHz low noise amplifier(LNA),designed in a chartered 0.18μm RFCMOS technology,is presented.The ultra-wideband LNA consists of only two simple amplifiers with an inter-stage inductor connected.The first stage utilizing a resistive current reuse and dual inductive degeneration technique is used to attain a wideband input matching and low noise figure.A common source amplifier with an inductive peaking technique as the second stage achieves high flat gain and wide -3 dB bandwidth of the overall amplifier simultaneously.The implemented ultra-wideband LNA presents a maximum power gain of 15.6 dB,and a high reverse isolation of—45 dB,and good input/output return losses are better than -10 dB in the frequency range of 3.1-10.6 GHz.An excellent noise figure(NF) of 2.8-4.7 dB was obtained in the required band with a power dissipation of 14.1 mW under a supply voltage of 1.5 V.An input-referred third-order intercept point(IIP3) is -7.1 dBm at 6 GHz.The chip area,including testing pads,is only 0.8×0.9 mm2.  相似文献   

14.
This paper presents the design and implementation of a fully integrated multi-band RF receiver frontend for GNSS applications on L-band.A single RF signal channel with a low-IF architecture is adopted for multi-band operation on the RF section,which mainly consists of a low noise amplifier(LNA),a down-converter,polyphase filters and summing circuits.An improved cascode source degenerated LNA with a multi-band shared off-chip matching network and band switches is implemented in the first amplifying stage....  相似文献   

15.
A novel delay stage for ring oscillator utilizing multiloop technique is presented in this paper. Different conventional delay stages for the multiloop ring oscillators have been reviewed and analyzed in this work. By using push-pull inverter as the secondary input in its delay cell, the proposed oscillator demonstrates a frequency improvement of up to 17% when compared with conventional designs. The fabricated oscillator is measured to cover a frequency range of 6.24–7.04 GHz. Operating in 1.8-V power supply, the oscillator manifests itself a phase noise of ?107.7 dBc/Hz@10 MHz offset from a center frequency of 6.25 GHz. The proposed oscillator consumes a current of 40–51 mA from the 1.8-V supply and occupies an area of 440 μm ×  430 μm.  相似文献   

16.
正A 5-GHz CMOS programmable frequency divider whose modulus can be varied from 2403 to 2480 for 2.4-GHz ZigBee applications is presented.The divider based on a dual-modulus prescaler(DMP) and pulse-swallow counter is designed to reduce power consumption and chip area.Implemented in the 0.18-μm mixed-signal CMOS process,the divider operates over a wide range of 1-7.4 GHz with an input signal of 7.5 dBm;the programmable divider output phase noise is -125.3 dBc/Hz at an offset of 100 kHz.The core circuit without test buffer consumes 4.3 mA current from a 1.8 V power supply and occupies a chip area of approximately 0.015 mm~2.The experimental results indicate that the programmable divider works well for its application in frequency synthesizers.  相似文献   

17.
The prolific growth of portable electronic devices (PED) has generated tremendous interests among researchers to develop programmable phase-locked loops (PLLs) because of their abilities to produce multiple spectrally pure output frequencies from a fixed frequency oscillator. The power consumption of the RF block of a PED is mostly dominated by the programmable PLLs which are widely used in the design of these devices. Therefore to reduce the overall power consumption in a portable device and to increase the battery life time, low-voltage and low-power are the two key requirements for the PLL design. In this work an improved programmable fractional frequency divider has been incorporated to enhance the overall performance of the PLL that includes lower operating supply voltage and lower power consumption compared to the state-of-art. The proposed programmable fractional PLL has an operating frequency in the range of 1.7–2.5 GHz, and a frequency resolution of 2.5 MHz. Measurement results reveal that the proposed programmable PLL can operate at 2.4 GHz with a 1.46 V power supply voltage and only 10 mW of power consumption.  相似文献   

18.
A 5.25 GHz low voltage, high linear and isolated mixer using TSMC 0.18 μm CMOS process for WLAN receiver was investigated. The paper presents a novel topology mixer that leads to better performance in terms of linearity, isolation and power consumption for low supply voltage. The measuring results of the proposed mixer achieve: 7.6 dB power conversion gain, 11.4 dB double side band noise figure, 3 dBm input third-order intercept point, and the total dc power consumption of this mixer including output buffers is 2.45 mW from a 1 V supply voltage. The current output buffer is about 2 mW, the excellent LO-RF, LO-IF and RF-IF isolation achieved up to 37.8, 54.8 and 38.2 dB, respectively.  相似文献   

19.
A fully integrated low power RF transmitter for a WiMedia 3.1-4.8 GHz multiband orthogonal frequency division multiplexing ultra-wideband system is presented. With a separate transconductance stage, the quadrature up-conversion modulator achieves high linearity with low supply voltage. The co-design of different resonant frequencies of the modulator and the differential to single (D2S) converter ensures in-band gain flatness. By means of a series inductor peaking technique, the D2S converter obtains 9 dB more gain without extra power consumption. A divided-by-2 divider is used for carrier signal generation. The measurement results show an output power between -10.7 and -3.1 dBm with 7.6 dB control range, an OIP3 up to 12 dBm, a sideband rejection of 35 dBc and a carrier rejection of 30 dBc. The ESD protected chip is fabricated in the Jazz 0.18μm RF CMOS process with an area of 1.74 mm^2 and only consumes 32 mA current (at 1.8 V) including the test associated parts.  相似文献   

20.
An integrated low-phase-noise voltage-controlled oscillator(VCO) has been designed and fabricated in SMIC 0.18μm RF CMOS technology.The circuit employs an optimally designed LC resonator and a differential cross-coupling amplifier acts as a negative resistor to compensate the energy loss of the resonator.To extend the frequency tuning range,a three-bit binary-weighted switched capacitor array is used in the circuit.The testing result indicates that the VCO achieves a tuning range of 60%from 1.92 to 3.35 GHz.The phase noise of the VCO is -117.8 dBc/Hz at 1 MHz offset from the carrier frequency of 2.4 GHz.It draws 5.6 mA current from a 1.8 V supply.The VCO integrated circuit occupies a die area of 600×900μm~2.It can be used in the IEEE802.11 b based wireless local network receiver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号