首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
苏适  廖小平 《半导体学报》2009,30(5):054004-4
This paper presents the modeling, fabrication, and measurement of a capacitive membrane MEMS microwave power sensor. The sensor measures microwave power coupled from coplanar waveguide (CPW) transmission lines by a MEMS membrane and then converts it into a DC voltage output by using thermopiles. Since the fabrication process is fully compatible with the GaAs monolithic microwave integrated circuit (MMIC) process, this sensor could be conveniently embedded into MMIC. From the measured DC voltage output and S-parameters, the average sensitivity in the X-band is 225.43μV/mW, while the reflection loss is below -14 dB. The MEMS microwave power sensor has good linearity with a voltage standing wave ration of less than 1.513 in the whole X-band. In addition, the measurements using amplitude modulation signals prove that the modulation index directly influences the output DC voltage.  相似文献   

2.
Wang Debo  Liao Xiaoping 《半导体学报》2009,30(5):054006-054006-3
A novel symmetrical microwave power sensor based on MEMS technology is presented. In this power sensor, the left section inputs the microwave power, while the right section inputs the DC power. Because of its symmetrical structure, this power sensor provides more accurate microwave power measurement capability without mismatch uncertainty and temperature drift. The loss caused by the microwave signal is simulated in this power sensor. This power sensor is designed and fabricated using GaAs MMIC technology. And it is measured in the frequency range up to 20 GHz with an input power in the 0-80 mW range. Over the 80 mW dynamic range, the sensitivity can achieve about 0.2 mV/mW. The difference between the input power in the two sections is below 0.1% for an equal output voltage. In short, the key aspect of this power sensor is that the microwave power measurement is replaced with a DC power measurement.  相似文献   

3.
一种基于MEMS技术的新型对称式微波功率传感器   总被引:1,自引:0,他引:1  
王德波  廖小平 《半导体学报》2009,30(5):054006-3
A novel symmetrical microwave power sensor based on MEMS technology is presented. In this power sensor, the left section inputs the microwave power, while the fight section inputs the DC power. Because of its symmetrical structure, this power sensor provides more accurate microwave power measurement capability without mismatch uncertainty and temperature drift. The loss caused by the microwave signal is simulated in this power sensor. This power sensor is designed and fabricated using GaAs MMIC technology. And it is measured in the frequency range up to 20 GHz with an input power in the 0-80 mW range. Over the 80 mW dynamic range, the sensitivity can achieve about 0.2 mV/mW. The difference between the input power in the two sections is below 0.1% for an equal output voltage. In short, the key aspect of this power sensor is that the microwave power measurement is replaced with a DC power measurement.  相似文献   

4.
Xu Yinglin  Liao Xiaoping 《半导体学报》2009,30(4):044010-044010-4
A terminating type MEMS microwave power sensor based on the Seebeck effect and compatible with the GaAs MMIC process is presented.An electrothermal model is introduced to simulate the heat transfer behavior and temperature distribution.The sensor measured the microwave power from-20 to 20 dBm up to 20 GHz.The sensitivity of the sensor is 0.27 mV/mW at 20 GHz.and the input retum loss is less than-26 dB over the entire experiment frequency range.In order to improve the sensitivity,four different types of coplanar waveguide(CPW) were designed and the sensitivity Was significantly increased by about a factor of 2.  相似文献   

5.
许映林  廖小平 《半导体学报》2009,30(4):044010-4
A terminating type MEMS microwave power sensor based on the Seebeck effect and compatible with the GaAs MMIC process is presented. An electrothermal model is introduced to simulate the heat transfer behavior and temperature distribution. The sensor measured the microwave power from –20 to 20 dBm up to 20 GHz. The sensitivity of the sensor is 0.27 mV/mW at 20 GHz, and the input return loss is less than –26 dB over the entire experiment frequency range. In order to improve the sensitivity, four different types of coplanar waveguide (CPW) were designed and the sensitivity was significantly increased by about a factor of 2.  相似文献   

6.
韩磊 《半导体学报》2011,32(5):055003-5
提出了一种具有工作和不工作两种状态的8GHz-12GHz宽带在线式微波功率传感器结构,该功率传感器通过测量由MEMS膜从共面波导线耦合出的一小部分微波功率实现功率的测量。为了降低功率传感器在不工作状态的微波损耗,提出了一种能够实现两种工作状态的新型的状态转换开关结构。该结构制作工艺与GaAs MMIC工艺完全兼容。测量结果显示,在10GHz中心频率处,该结构功率传感器在不工作状态下的插入损耗为0.18dB,而在工作状态下的插入损耗为0.24dB,这意味着在不工作状态下没有微波功率被耦合出来。  相似文献   

7.
A wideband 8-12 GHz inline type microwave power sensor,which has both working and non-working states,is presented.The power sensor measures the microwave power coupled from a CPW line by a MEMS membrane.In order to reduce microwave losses during the non-working state,a new structure of working state transfer switches is proposed to realize the two working states.The fabrication of the power sensor with two working states is compatible with the GaAs MMIC(monolithic microwave integrated circuit) process.The experimental results show that the power sensor has an insertion loss of 0.18 dB during the non-working state and 0.24 dB during the working state at a frequency of 10 GHz.This means that no microwave power has been coupled from the CPW line during the non-working state.  相似文献   

8.
The design,fabrication,and experimental results of an MEMS microwave frequency detector are presented for the first time.The structure consists of a microwave power divider,two CPW transmission lines,a microwave power combiner,an MEMS capacitive power sensor and a thermopile.The detector has been designed and fabricated on GaAs substrate using the MMIC process at the X-band successfully.The MEMS capacitive power sensor is used for detecting the high power signal,while the thermopile is used for detecting the low power signal.Signals of 17 and 10 dBm are measured over the X-band.The sensitivity is 0.56 MHz/fF under 17 dBm by the capacitive power sensor,and 6.67 MHz//μV under 10 dBm by the thermopile.respectively.The validity of the presented design has been confirmed by the experiment.  相似文献   

9.
张俊  廖小平  焦永昌 《半导体学报》2009,30(4):044009-4
The design, fabrication, and experimental results of an MEMS microwave frequency detector are presented for the first time. The structure consists of a microwave power divider, two CPW transmission lines, a microwave power combiner, an MEMS capacitive power sensor and a thermopile. The detector has been designed and fabricated on GaAs substrate using the MMIC process at the X-band successfully. The MEMS capacitive power sensor is used for detecting the high power signal, while the thermopile is used for detecting the low power signal. Signals of 17 and 10 dBm are measured over the X-band. The sensitivity is 0.56 MHz/fF under 17 dBm by the capacitive power sensor, and 6.67 MHz / μV under 10 dBm by the thermopile, respectively. The validity of the presented design has been confirmed by the experiment.  相似文献   

10.
针对基于 GaAs晶体管的大功率微波整流电路,设计了一种应用于大功率微波无线输能系统的整流电路。该大功率微波整流电路基于微带结构,工作频率为2.45 GHz,具有质量轻,整流输出功率大的特点。在不同微波输入功率和负载下进行测量,发现当输入微波功率为30 dBm,负载为38Ω时,整流电路获得了测量过程中最大整流效率的41%;当输入微波功率为34 dBm,负载为23Ω时整流电路得到测量过程中获得的最高直流功率输出28.7 dBm。通过完善和改进电路,可以进一步提高整流的效率,并应用于高功质比的微波整流天线。  相似文献   

11.
刘彤  廖小平  王德波 《半导体学报》2011,32(7):074009-5
本文采用傅里叶等效模型对一种与GaAs MMIC工艺兼容的终端式MEMS微波功率传感器的热转移行为进行了研究,在该傅里叶等效模型的基础上,重点分析了微波功率传感器灵敏度与热电堆长度之间的关系。对传感器芯片进行了测试,频率为10GHz,输入功率为1~100mW,传感器具有良好的匹配特性和较高的线性度;热电偶的长度为40,70和100μm时,基于该傅里叶等效模型计算得到的灵敏度值分别为0.12,0.20和0.29mV/mW, 而相对应的测试结果分别为0.10,0.22和0.30mV/mW,其误差小于0.02 mV/mW。因此基于该傅里叶等效模型的灵敏度表达式得到了实验验证。  相似文献   

12.
A Fourier equivalent model is introduced to research the thermal transfer behavior of a terminating-type MEMS microwave power sensor.The fabrication of this MEMS microwave power sensor is compatible with the GaAs MMIC process.Based on the Fourier equivalent model,the relationship between the sensitivity of a MEMS microwave power sensor and the length of thermopile is studied in particular.The power sensor is measured with an input power from 1 to 100 mW at 10 GHz,and the measurement results show that the power sensor has good input match characteristics and high linearity.The sensitivity calculated from a Fourier equivalent model is about 0.12,0.20 and 0.29 mV/mW with the length at 40,70 and 100μm,respectively,while the sensitivity of the measurement results is about 0.10,0.22 and 0.30 mV/mW,respectively,and the differences are below 0.02 mV/mW. The sensitivity expression based on the Fourier equivalent model is verified by the measurement results.  相似文献   

13.
戈勤  陶洪琪  余旭明 《半导体学报》2015,36(12):125003-4
本文报道了一款基于南京电子器件研究所GaAs pHEMT单片集成电路工艺的S波段宽带高效率功率放大器。为了提高芯片效率,该放大器采用驱动比为1:8的两级级联方式,并采用低通/高通滤波器相结合的拓扑结构设计每级的匹配电路。这种匹配电路在有效降低芯片面积的同时,在较宽的频带范围内实现对应于高效率的阻抗匹配。在5V漏压AB类偏置条件下,该功率放大器在1.8到3GHz频率范围内连续波输出饱和功率为33~34 dBm,相应的附加效率达到35%~45%,以及非常平坦的功率增益25~26 dB。芯片面积紧凑,尺寸仅为2.7mm×2.75mm。  相似文献   

14.
射频微机械开关由于其优越的高频特性在微波和毫米波电路中表现出巨大的应用前景。但是目前的微机械开关都是制作在硅基衬底上的 ,难于与后面的高频砷化镓处理电路相集成。本文介绍了基于砷化镓衬底的RFMEMS膜开关 ,着重介绍了开关的工作原理、制作过程和测试结果  相似文献   

15.
高波  杨晶  蒋思  王德波 《半导体学报》2016,37(8):084004-3
A power radiation monitoring system based on thermoelectric MEMS microwave power sensors is studied. This monitoring system consists of three modules: a data acquisition module, a data processing and display module, and a data sharing module. It can detect the power radiation in the environment and the date information can be processed and shared. The measured results show that the thermoelectric MEMS microwave power sensor and the power radiation monitoring system both have a relatively good linearity. The sensitivity of the thermoelectric MEMS microwave power sensor is about 0.101 mV/mW, and the sensitivity of the monitoring system is about 0.038 V/mW. The voltage gain of the monitoring system is about 380 times, which is relatively consistent with the theoretical value. In addition, the low-frequency and low-power module in the monitoring system is adopted in order to reduce the electromagnetic pollution and the power consumption, and this work will extend the application of the thermoelectric MEMS microwave power sensor in more areas.  相似文献   

16.
Xu Yinglin  Liao Xiaoping 《半导体学报》2009,30(10):104006-104006-4
A terminating type MEMS microwave power sensor based on the Seebeck effect and compatible with the GaAs MMIC process is presented. An electrothermal model is introduced to simulate the thermal time constant. An analytical result, about 160 ms, of the thermal time constant from the non-stationary Fourier heat equations for the structure of the sensor is also given. The sensor measures the microwave power jumping from 15 to 20 dBm at a constant frequency 15 GHz, and the experimental thermal time constant result is 180 ms. The frequency is also changed from 20 to 10 GHz with a constant power 20 dBm, and the result is also 180 ms. Compared with the analytical and experimental results, the model is verified.  相似文献   

17.
终端式MEMS微波功率传感器的热时间常数研究   总被引:1,自引:1,他引:0  
许映林  廖小平 《半导体学报》2009,30(10):104006-4
A terminating type MEMS microwave power sensor based on the Seebeck effect and compatible with the GaAs MMIC process is presented.An electrothermal model is introduced to simulate the thermal time constant. An analytical result,about 160 ms,of the thermal time constant from the non-stationary Fourier heat equations for the structure of the sensor is also given.The sensor measures the microwave power jumping from 15 to 20 dBm at a constant frequency 15 GHz,and the experimental thermal time constant result is 180 ms.The frequency is also changed from 20 to 10 GHz with a constant power 20 dBm,and the result is also 180 ms.Compared with the analytical and experimental results,the model is verified.  相似文献   

18.
A broadband frequency doubler using left-handed nonlinear transmission lines(LH NLTLs) based on MMIC technology is reported for the first time.The second harmonic generation on LH NLTLs was analyzed theoretically. A four-section LH NLTL which has a layout of 5.4×0.8 mm~2 was fabricated on GaAs semi-insulating substrate. With 20-dBm input power,the doubler obtained 6.33 dBm peak output power at 26.8 GHz with 24-43 GHz—6 dBm bandwidth.The experimental results were quite consistent with the simulated results.The compactness and the broad band characteristics of the circuit make it well suit for GaAs RF/MMIC application.  相似文献   

19.
韩磊  黄庆安  廖小平 《半导体学报》2007,28(7):1144-1148
提出了一种基于MEMS技术的在线式微波功率传感器结构,并对该结构进行了理论分析、设计、制作和测量.该结构通过测量由MEMS膜耦合出的一小部分微波功率实现功率的测量.该结构制作工艺与GaAs MMIC工艺完全兼容.测量结果显示,在12GHz频率以内,微波功率传感器的反射系数小于-15dB,插入损耗小于2dB,在10GHz中心频率下的灵敏度为10 4μV/mW.  相似文献   

20.
韩磊  黄庆安  廖小平 《半导体学报》2007,28(7):1144-1148
提出了一种基于MEMS技术的在线式微波功率传感器结构,并对该结构进行了理论分析、设计、制作和测量.该结构通过测量由MEMS膜耦合出的一小部分微波功率实现功率的测量.该结构制作工艺与GaAs MMIC工艺完全兼容.测量结果显示,在12GHz频率以内,微波功率传感器的反射系数小于-15dB,插入损耗小于2dB,在10GHz中心频率下的灵敏度为10 4μV/mW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号