首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two-step exposure method to effectively reduce the proximity effect in fabricating nanometer-spaced nanopillars is presented. In this method, nanopillar patterns on poly-methylmethacrylate (PMMA) were partly crosslinked in the first-step exposure. After development, PMMA between nanopillar patterns was removed, and hence the proximity effect would not take place there in the subsequent exposure. In the second-step exposure, PMMA masks were completely cross-linked to achieve good resistance in inductively coupled plasma etching. Accurate pattern transfer of rows of nanopillars with spacing down to 40 nm was realized on a silicon-on-insulator substrate.  相似文献   

2.
We propose a process combining UV-assisted nanoimprint lithography (NIL) and shadow mask evaporation techniques to fabricate metallic nanoparticles with cavities. A bi-layer transparent soft stamp with a hard top layer containing the high resolution patterns was obtained by spin coating and casting methods of PDMS. Then, it was used to mold the top photo-curable resist on a thick PMMA layer. After removal of the residual NIL resist layer, high density and high aspect ratio PMMA nanopillar arrays were obtained by reactive ion etching. Afterward, a four step evaporation under oblique angle was performed to deposit the gold nanostructures at the top of nanopillars. After lift-off, uniformly sized gold nanocavities were collected. Dark-field microscopy imaging of the fabricated nanocavities shows a clear geometry dependence of the emission peak wavelength, thereby providing a novel types of bio-sensing nano-objects.  相似文献   

3.
Silica nanopillars are used as substrate for Cadmium sulfide (CdS) photoresistor for the first time. The nanopillars substrate with the large surface ratio can increase the quantity of sensitive material and the surface of light response, which can improve the photosensitivity of the CdS photoresistor obviously. Silicon nanopillars are fabricated by Cesium Chloride (CsCl) self-assembly lithography and inductively coupled plasma (ICP) dry etching, after oxidation, the silicon nanopillars changes to silica nanopillars totally, then the 200 nm thickness CdS film is deposited on the nanopillars surface by RF magnetron sputtering using CdS ceramic target. XRD patterns of the nanopillar and planar substrates after CdS film covering indicate that all the deposited films are crystal. Photosensitivity properties of the photoresistor are tested by a home-made instrument in our group. The test results show that the nanopillar based photoresistor has the higher photosensitivity response than the planar one with different irradiance from 400 to 11,000 μW/cm2. With 10,000 μW/cm2 irradiance at the room temperature, the photosensitivity response for the planar sample is only 62, while the response for the nanopillar sample achieves to 137, which is more than double of the planar one. The result reveals that the nanopillars morphology can be used as substrate to increase the property of the photoresistor.  相似文献   

4.
An optical method is used to create multi‐dimensional metal structures with three distinct periodicities for surface‐enhanced Raman scattering (SERS). Periodic arrays of nanopillars are formed by phase‐shift interference lithography on sub‐micrometer length scales. With the help of a standing wave, each nanopillar is made to be a disk‐stacking structure consisting of a series of 20‐nm‐thick metal nanogaps; the nanopillars consequently resemble a pagoda. The vertically integrated metal nanogaps of the metal‐deposited pagoda‐like nanopillars enable strong localization of an electromagnetic field and effective enhancement of Raman signals for molecules adsorbed on the metal surface. Moreover, the nanopillars are arranged in a regular lattice, which results in a low spatial variation of the SERS intensity and provides high reproducibility in measurements. Arrays of the nanopillars can be further micropatterned to have a periodicity ranging from tens of micrometers to a millimeter by subsequently employing photo‐lithography. The nanopillar arrays promote the wetting of sample fluids, which enables the selective confinement of fluids on the array regions of the micropatterns without spreading. Consequently, numerous fluid samples can be separately deposited, enabling SERS‐based analysis of multiple samples using a single substrate.  相似文献   

5.
Positioning probe molecules at electromagnetic hot spots with nanometer precision is required to achieve highly sensitive and reproducible surface‐enhanced Raman spectroscopy (SERS) analysis. In this article, molecular positioning at plasmonic nanogaps is reported using a high aspect ratio (HAR) plasmonic nanopillar array with a controlled surface energy. A large‐area HAR plasmonic nanopillar array is generated using a nanolithography‐free simple process involving Ar plasma treatment applied to a smooth polymer surface and the subsequent evaporation of metal onto the polymer nanopillars. The surface energy can be precisely controlled through the selective removal of an adsorbed self‐assembled monolayer of low surface‐energy molecules prepared on the plasmonic nanopillars. This process can be used to tune the surface energy and provide a superhydrophobic surface with a water contact angle of 165.8° on the one hand or a hydrophilic surface with a water contact angle of 40.0° on the other. The highly tunable surface wettability is employed to systematically investigate the effects of the surface energy on the capillary‐force‐induced clustering among the HAR plasmonic nanopillars as well as on molecular concentration at the collapsed nanogaps present at the tops of the clustered nanopillars.  相似文献   

6.
Resist profiles in electron beam exposed PMMA have been simulated before and after proximity exposure compensation (correction) for isolated and closely spaced line patterns. Edge slope of the resist profiles obtained in the two cases (before and after proximity exposure compensation) indicate the effectiveness of the compensation technique. Along with the edge slopes the line width variations are also determined.  相似文献   

7.
Uniform GaN nanopillar arrays have been successfully fabricated by inductively coupled plasma etching using self-organized nickel nano-islands as the masks on GaN/sapphire. GaN nanopillars with diameters of 350 nm and densities of 2.6 × 10^8 cm^-2 were demonstrated and controlled by the thickness of Ni film and the NH3 annealing time. These GaN nanopillars show improved optical properties and strain change compared to that of GaN film before ICP etching. Such structures with large-area uniformity and high density could provide additional advantages for light emission of light-emitting diodes, quality improvement of ELO regrowth, etc.  相似文献   

8.
We report on the details of controlled fabrication of highly crystalline gallium nitride (GaN) two-dimensional highly periodic ultradense nanopore and nanopillar arrays by self-assembly nanopatterning. Nanopore synthesis relies on the use of anodized alumina oxide template as a mask for dry etching of GaN top surface using chlorine gas. The inverse patterning is accomplished by site-selective deposition of metal nanodot array by e-beam evaporation of Ni through the pores of the template; after which the template is removed and dry etching is performed. The formed patterns demonstrate an excellent hexagonal order and uniformity according to fast Fourier transformation performed. The presented approach is robust, highly reproducible, and technically undemanding. Moreover, unreduced crystallinity of the produced nanopillars and nanopores was confirmed with Raman measurements, which suggests their possible use as future substrates for engineering advanced nano-optoelectronic devices and sensors.  相似文献   

9.
Poly(methyl methacrylate) (PMMA) is a commonly used resist for electron-beam lithography. Some primary reasons for the widespread popularity of PMMA include high resolution and low cost. Single layer PMMA has notably poor characteristics in metal liftoff and sub-15 nm resolution as well as poor line edge roughness. Standard problems with liftoff such as tags, feature removal and lack of solvent penetration were alleviated with a poly-imide lift-off layer which increased resolution and allowed better liftoff. The effect of dense feature proximity over-dose was also reduced with this method. Single lines in metal as small as 23 nm were achieved and denser patterns were resolved with a pitch of 50 nm. These results increase the utility of PMMA as a nanolithographic material for fabricating small metallic features by the use of a liftoff technique.  相似文献   

10.
电子束曝光的Morte Carlo模拟   总被引:3,自引:0,他引:3  
建立一个更为严格地描述电子散射过程的物理模型,运用Monte Carlo方法模拟高斯分布电子束在靶体PMMA-衬底中的散射过程,研究不同曝光条件对沉积能密度的影响,获得的沉积能分布规律是:有利于降低邻近效应的高束能、薄胶层,提高曝光分辩率。  相似文献   

11.
A colloidal quantum dot light‐emitting diode (QLED) is reported with substantially enhanced light extraction efficiency by applying a layer of large‐scale, low‐cost, periodic nanopillar arrays. Zinc oxide nanopillars are grown on the glass surface of the substrate using a simple, efficient method of non‐wetting templates. With the layer of ZnO nanopillar array as an optical outcoupling medium, a record high current efficiency (CE) of 26.6 cd/A is achieved for QLEDs. Consequently, the corresponding external quantum efficiency (EQE) of 9.34% reaches the highest EQE value for green‐emitting QLEDs. Also, the underlying physical mechanisms enabling the enhanced light‐extraction are investigated, which leads to an excellent agreement of the numerical results based on the mode theory with the experimental measurements. This study is the first account for QLEDs offering detailed insight into the light extraction efficiency enhancement of QLED devices. The method demonstrated here is intended to be useful not only for opening up a ubiquitous strategy for designing high‐performance QLEDs but also with respect to fundamental research on the light extraction in QLEDs.  相似文献   

12.
超构透镜作为一种灵活调控空间光场相位、振幅及偏振的有效选择,在超分显微成像中受到了广泛的关注。为了提高多波长显微成像的分辨率,解决传统光学系统结构厚重、设计复杂等问题,基于相位补偿理论,运用传输相位法以及粒子群优化算法,设计了一种基于二氧化钛纳米单元柱的反射式消色差超构透镜,在500~550 nm之间实现了恒定聚焦,且该透镜具有偏振不敏感的特性。与数值孔径相同但有色散的超构透镜的对比结果有效证实了该超构透镜的消色差功能。所设计的透镜可应用于多波长显微成像系统中并提高成像的分辨率。此外,该消色差透镜在数码相机和光学仪器等领域中也有较好的应用价值。  相似文献   

13.
Bioaerosol contamination problems have led to the need for new technologies that effectively collect and inactivate airborne microorganisms. Typical nanomaterial-based filter membranes are usually sterilized using photocatalysts, electrical stimulation, and thermal treatment, which are expensive and require additional devices and cumbersome manufacturing. In this study, a membrane with nanotopographical features is manufactured via a catalyst droplet-based procedure to mechanically damage airborne bacteria. The catalyst droplets are used as templates for in situ novel puncturable nanopillar growth on the membrane surface. Numerical simulations and microscopic observations show that puncturable nanopillars with a thin and rough nano-edge are advantageous for rupturing the bacterial cell compared to flat nanopillars without a thin edge. A puncturable nanostructured air filter (PNAF) is compared to a bare air filter and exhibits higher bioaerosol collection efficiencies (>98% and 89.3–95.7%, respectively). PNAF is tested under breathing conditions as part of a face mask, where it effectively captures and deactivates E. coli aerosols through a mechano-bactericidal effect, resulting in the inhibition of bacterial proliferation and finally death. Thus, PNAF can be applied as an air purifier or face mask filter for bioaerosol collection presenting antibacterial effects without external stimulation.  相似文献   

14.
本文从光学邻近效应的机理出发,基于区域划分掩模特征线条,实施曝光剂量控制,从而达到光学邻近效应的精细校正。通过模拟测试图形得到改进后的掩模图形畸变率,与传统曝光剂量校正法相比,减少了约4%。  相似文献   

15.
Focused‐electron‐beam‐induced deposition (FEBID) is employed to create freestanding magnetic nanostructures. By growing Fe nanopillars on top of a perpendicular magnetic domain wall (DW) conduit, pinning of the DWs is observed due to the stray fields emanating from the nanopillar. Furthermore, a different DW pinning behavior is observed between the up and down magnetic states of the pillar, allowing to deduce the switching fields of the pillar in a novel way. The implications of these results are two‐fold: not only can 3‐dimensional nano‐objects be used to control DW motion in applications, it is also proposed that DW motion is a unique tool to probe the magnetic properties of nano‐objects.  相似文献   

16.
A new method to fabricate nanoscale metallic air-bridges has been investigated. The pillar patterns of the air-bridge were defined on a SiO2 sacrificial layer by electron-beam lithography combined with inductively coupled plasma etching. Thereafter, the span (suspended part between the pillars) patterns were defined with a second electron-beam exposure on a PMMA/PMMA–MAA resist system. The fabrication process was completed by subsequent metal electron-beam evaporation, lift-off in acetone, and removal of the sacrificial layer in a buffered hydrofluoric (HF) solution. Air-bridges with two different geometries (line-shaped and cross-shaped) were studied in detail. The narrowest width of the air-bridges was around 200 nm, and the typical length of the air-bridges was 2–5 μm. The advantages of our method are the simplicity of carrying out electron-beam exposure with good reproducibility and the capability of more accurate control of the pillar sizes and shapes of the air-bridge.  相似文献   

17.
To create submicrometer patterns with high accuracy on thick single-layer negative resist, error factors that degrade pattern accuracy have been investigated. Pattern accuracy was analyzed using a new evaluation method based on the difference between the resist development energy and the exposure energy at points on the edge of each shape. By introducing a new evaluation parameter, we were able to clarify error factors from the exposure conditions, the proximity effect correction method, and the machine exposure fluctuation. The evaluation parameterKisQ/Q_{0}whereQis the exposure dose appropriate for the desired resist thickness and Q0is the interface gel dose. It was found that the resist resolution and the rounding error of the exposure dose were serious error factors, especially in delineation on submicrometer patterns. To achieve 0.5-µm patterns with ±0.1-µm accuracy on 1-µm-thick negative resist, the resist evaluation parameterKmust be less than 2, the rounding error of the exposure dose must be less than 2.5 percent of the dose, and the beam addressing unit (LSB) must be less than 0.025 µm.  相似文献   

18.
利用自组装的方法在硅基片表面形成一层均匀的金纳米粒子掩模,分析了偶联剂对自组装的影响,以金纳米粒子作掩模进行反应离子刻蚀,研究了刻蚀时间对硅纳米柱阵列的影响,提供了一种简单、便宜并且有效的在硅基底上大面积形成纳米柱阵列的纳米加工方法。实验中发现,超过一定刻蚀时间时,有过刻蚀现象发生,在120 s刻蚀时间下,得到了直径小于20 nm,深宽比高达10∶1以上规则、致密、大面积分布的硅纳米柱或硅纳米锥状结构。  相似文献   

19.
A novel simple dose-compensation method is developed for proximity effect correction in electron-beam lithography.The sizes of exposed patterns depend on dose factors while other exposure parameters(including accelerate voltage,resist thickness,exposing step size,substrate material,and so on) remain constant.This method is based on two reasonable assumptions in the evaluation of the compensated dose factor:one is that the relation between dose factors and circle-diameters is linear in the range under con...  相似文献   

20.
本文介绍了在电子束光刻中修正邻近效应的一种有效的剂量补偿方法。在其它曝光参数一定的条件下(包括加速电压,抗蚀剂厚度,曝光步长大小及衬底材料等)图形尺寸由剂量大小决定。本方法基于两种合理的假设来确定补偿剂量因子。一是假设在特定实验范围内,剂量的大小和圆直径的关系可以看作是线性的。二是假设补偿剂量因子仅受最近邻图形的影响。四层六角光子晶体作为本实验方法的测试图形。比较没有修正的结构,修正后的结构中孔大小的一致性得到了显著的提高  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号