共查询到20条相似文献,搜索用时 15 毫秒
1.
The design, fabrication, and experimental results of an MEMS microwave frequency detector are presented for the first time. The structure consists of a microwave power divider, two CPW transmission lines, a microwave power combiner, an MEMS capacitive power sensor and a thermopile. The detector has been designed and fabricated on GaAs substrate using the MMIC process at the X-band successfully. The MEMS capacitive power sensor is used for detecting the high power signal, while the thermopile is used for detecting the low power signal. Signals of 17 and 10 dBm are measured over the X-band. The sensitivity is 0.56 MHz/fF under 17 dBm by the capacitive power sensor, and 6.67 MHz / μV under 10 dBm by the thermopile, respectively. The validity of the presented design has been confirmed by the experiment. 相似文献
2.
This paper presents the modeling, fabrication, and measurement of a capacitive membrane MEMS microwave power sensor. The sensor measures microwave power coupled from coplanar waveguide (CPW) transmission lines by a MEMS membrane and then converts it into a DC voltage output by using thermopiles. Since the fabrication process is fully compatible with the GaAs monolithic microwave integrated circuit (MMIC) process, this sensor could be conveniently embedded into MMIC. From the measured DC voltage output and S-parameters, the average sensitivity in the X-band is 225.43μV/mW, while the reflection loss is below -14 dB. The MEMS microwave power sensor has good linearity with a voltage standing wave ration of less than 1.513 in the whole X-band. In addition, the measurements using amplitude modulation signals prove that the modulation index directly influences the output DC voltage. 相似文献
3.
This paper presents the modeling, fabrication, and measurement of a capacitive membrane MEMS microwave power sensor. The sensor measures microwave power coupled from coplanar waveguide (CPW) transmission lines by a MEMS membrane and then converts it into a DC voltage output by using thermopiles. Since the fabrication process is fully compatible with the GaAs monolithic microwave integrated circuit (MMIC) process, this sensor could be conveniently embedded into MMIC. From the measured DC voltage output and S-parameters, the average sensitivity in the X-band is 225.43 μV/mW, while the reflection loss is below-14 dB. The MEMS microwave power sensor has good linearity with a voltage standing wave ration of less than 1.513 in the whole X-band. In addition, the measurements using amplitude modulation signals prove that the modulation index directly influences the output DC voltage. 相似文献
4.
探测器阵列法测量激光光斑参数关键技术分析 总被引:9,自引:0,他引:9
根据仅由衍射效应决定的远场激光光斑的分布函数,并以10.6μm CO2激光测量为例,分析了探测器点阵法测量远场激光大光斑的技术要求,包括能量密度、阵列尺寸、探测器间隔、响应频率几方面的要求.并分析了激光探测器器件的类型,给出探测器阵列单元探测器以及系统测量精度的标校方法. 相似文献
5.
An E-band high speed power detector MMIC using 0.1 μm pHEMT technology has been designed, manufactured and experimentally characterized. By employing a 4-way quadrature structure for phase cancellation, the first, second and third harmonics can be suppressed and the ripple at the output is minimized. Compared to conventional topology with a low pass filter, a short response time and high speed performance of demodulation can be reached. Simulated results indicate that the detector is capable of demodulating an on-off keying signal at a data rate up to 5 Gbps. The fabricated chip occupies 1×1.5 mm2and the on-wafer measurement shows a return loss of less than -15 dB, responsivity better than 700 mV/mW and dynamic range of more than 25 dB over 70 to 90 GHz. 相似文献
6.
A dynamic divide-by-two regenerative GaP/GaAs heterojunction bipolar transistors (HBTs) frequency divider (RFD) is presented in a 60-GHz-fT Intechnology. To achieve high operation bandwidth, active loads instead of resistor loads are incorporated into the RFD. On-wafer measurement shows that the divider is operating from 10 GHz up to at least 40 GHz, limited by the available input frequency. The maximum operation frequency of the divider is found to be much higher than fT/2 of the transistor, and also the divider has excellent input sensitivity. The divider consumes 300.85 mW from 5 V supply and occupies an area of 0.47 × 0.22 mm^2. 相似文献
7.
8.
This paper presents a 2.4 GHz hybrid integrated active circulator consisting of three power amplifiers and three PCB-based Wilkinson power dividers.The power amplifiers were designed and fabricated in a standard0.35- m Al Ga N/Ga N HEMT technology,and combined with three traditional power dividers on FR4 using bonding wires.Due to the isolation of power dividers,the isolation between three ports is achieved; meanwhile,due to the unidirectional characteristics of the power amplifiers,the nonreciprocal transfer characteristic of the circulator is realized.The measured insertion gain of the proposed active circulator is about 2–2.7 d B at the center frequency of 2.4 GHz,the isolation between three ports is better than 20 d B over 1.2–3.4 GHz,and the output power of the designed active circulator achieves up to 20.1–21.2 d Bm at the center frequency. 相似文献
9.
A compact lumped integrated power divider with low insertion loss using 0.5 μm GaAs pHEMT technology is presented. The proposed power divider uses the π-type LC network for transmission line equivalence and a thin film resistor for isolation tuning simultaneously. The quality factor of the inductor is analyzed and synthesized for insertion-loss influence. The measured insertion loss is less than 0.5 dB when the operating frequency is within the range of 5.15-6.15 GHz. The return loss and isolation are better than 15 dB and 20 dB, respectively. The compact dimension of the power divider is as small as 0.9 × 0.85 mm^2. The measured results agree well with the simulated ones. 相似文献
10.
11.
介绍一种微波再生式分频器的设计与实现。再生式分频器与数字分频器相比,它的工作频率高,相位噪声和杂散指标更为优越。设计出8GHz的微波分频电路,经过2次分频,输出信号为4GHz。实验结果表明,该微波再生式分频器输出信号比输入信号的相位噪声改善了约6dB,接近理论值,杂散指标优于-80dBc。 相似文献
12.
13.
14.
A broadband frequency doubler using left-handed nonlinear transmission lines(LH NLTLs) based on MMIC technology is reported for the first time.The second harmonic generation on LH NLTLs was analyzed theoretically. A four-section LH NLTL which has a layout of 5.4×0.8 mm~2 was fabricated on GaAs semi-insulating substrate. With 20-dBm input power,the doubler obtained 6.33 dBm peak output power at 26.8 GHz with 24-43 GHz—6 dBm bandwidth.The experimental results were quite consistent with the simulated results.The compactness and the broad band characteristics of the circuit make it well suit for GaAs RF/MMIC application. 相似文献
15.
This letter presents a high speed 2:1 regenerative dynamic frequency divider with an active transformer fabricated in 0.7 μm InP DHBT technology with fT of 165 GHz and fmax of 230 GHz. The circuit includes a two-stage active transformer, input buffer, divider core and output buffer. The core part of the frequency divider is composed of a double-balanced active mixer (widely known as the Gilbert cell) and a regenerative feedback loop. The active transformer with two stages can contribute to positive gain and greatly improve phase difference. Instead of the passive transformer, the active one occupies a much smaller chip area. The area of the chip is only 469×414 μm2 and it entirely consumes a total DC power of only 94.6 mW from a single -4.8 V DC supply. The measured results present that the divider achieves an operating frequency bandwidth from 75 to 80 GHz, and performs a -23 dBm maximum output power at 37.5 GHz with a 0 dBm input signal of 75 GHz. 相似文献
16.
具有在片稳定网络的GaAs HBT微波功率管 总被引:1,自引:0,他引:1
采用GaAs标准MMIC工艺制作了具有片上RC并联稳定网络的InGaP/GaAs HBT微波功率管单胞.依据K稳定因子,RC网络使功率管在较宽的频带内具有绝对稳定特性.Load-pull测试表明RC网络没有严重影响功率管的大信号特性,在5.4GHz饱和输出功率为30dBm,在11GHz 1dB压缩点输出功率大于21.6dBm.功率合成电路验证了该功率管具有高稳定性,非常适合制作微波大功率HBT放大器. 相似文献
17.
具有在片稳定网络的GaAs HBT微波功率管 总被引:1,自引:0,他引:1
采用GaAs标准MMIC工艺制作了具有片上RC并联稳定网络的InGaP/GaAs HBT微波功率管单胞.依据K稳定因子,RC网络使功率管在较宽的频带内具有绝对稳定特性.Load-pull测试表明RC网络没有严重影响功率管的大信号特性,在5.4GHz饱和输出功率为30dBm,在11GHz 1dB压缩点输出功率大于21.6dBm.功率合成电路验证了该功率管具有高稳定性,非常适合制作微波大功率HBT放大器. 相似文献
18.
基于0.25μm GaAs增强/耗尽型(E/D模)赝配高电子迁移率晶体管(PHEMT)工艺,设计并实现了一款集成了并行驱动器的多功能单片微波集成电路(MMIC)芯片。该芯片的移相器采用磁耦合全通网络(MCAPN)结构,功率分配器则使用集总元件进行集成,不仅缩小了芯片面积,并且在超宽带下实现了较好的相位精度和幅度一致性。采用微波探针台对芯片进行在片测试,结果表明在0.5~2.7 GHz,芯片性能良好:其小信号RF输入功率为0 dBm,芯片的插入损耗不大于7 dB,幅度波动在±0.8 dB以内,相位差为-98°~-85°,输入电压驻波比(VSWR)不大于1.9∶1,输出VSWR不大于1.9∶1,在-5 V电源下驱动器的静态电流为1 mA,响应速度为25 ns。芯片尺寸为3.4 mm×1.8 mm。该电路具有响应速度快、功耗低、集成度高等特点,可应用于多波束天线系统中。 相似文献
19.
GaAs微波单片集成电路的主要失效模式及机理 总被引:6,自引:1,他引:6
黄云 《电子产品可靠性与环境试验》2002,(3):9-14
从可靠性物理角角度,深入分析了引起砷化镓微波单片机集成电路(GaAs MMIC)退化或失效的主要失效模式及其失效机理,明确了GaAs MMIC的可靠性问题主要表现为有源器件、无源器件和环境因素等引入损伤退化,主要的失效部位是MMIC的有源器件。 相似文献