首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The EU Water Framework Directive (WFD) requires an integrated approach to river basin management in order to meet environmental and ecological objectives. This paper presents concepts and full-scale application of an integrated modelling framework. The Ringkoebing Fjord basin is characterized by intensive agricultural production and leakage of nitrate constitute a major pollution problem with respect groundwater aquifers (drinking water), fresh surface water systems (water quality of lakes) and coastal receiving waters (eutrophication). The case study presented illustrates an advanced modelling approach applied in river basin management. Point sources (e.g. sewage treatment plant discharges) and distributed diffuse sources (nitrate leakage) are included to provide a modelling tool capable of simulating pollution transport from source to recipient to analyse the effects of specific, localized basin water management plans. The paper also includes a land rent modelling approach which can be used to choose the most cost-effective measures and the location of these measures. As a forerunner to the use of basin-scale models in WFD basin water management plans this project demonstrates the potential and limitations of comprehensive, integrated modelling tools.  相似文献   

2.
A numerical catchment-scale model capable of simulating diffuse water pollution is necessary in sustainable environmental management for better implementation of the EU Water Framework Directive. This paper provides critical reviews of most popular and free models for diffuse water modelling, with detailed sources and application potential. Based upon these reviews, further work of selecting and testing the HSPF model was carried out, with a case study in the Upper Bann Catchment, Northern Ireland. The calibrated and validated HSPF model can well represent the characteristics of surface water quantity and quality. Climate change scenario evaluation in 5 years showed that when the annual mean temperature increase 3°C the mean yearly total runoff volume will decrease by 11.1% and the mean daily river flow 11.4%. If 20% crop and pasture land is converted into forest land in the study area, the mean river concentration of nitrate, nitrite, NH4 and PO4 in 5 years will decrease by 19.4%, 33.3%, 31.3% and 31.3% respectively. When applying filter strip method in 80% crop and pasture land in the area, the reduction of the mean concentration of nitrate, nitrite, NH4 and PO4 in 5 years will be 15.3%, 33.3%, 31.3%, and 5.6% respectively. This study shows that HSPF is a suitable model in handling diffuse source water pollution, which can be introduced into the Programme of Measures in the River Basin Management Plans for better implementation of the EU WFD.  相似文献   

3.
Verification of a diffuse pollution model involves comparing results actually observed with those predicted by precise model inputs. Acquisition of precise model inputs is, however, problematic. In particular, when the target catchment is large and substantial estimation uncertainty exists, not only model verification but also prediction is difficult. Therefore, in this study, rice-farming data were collected for all paddy fields from all farmers in a catchment and pesticide adsorption and degradation rates in paddy field soil samples were measured to obtain precise model inputs. The model inputs successfully verified the model's capability to predict pesticide concentrations in river water. Sensitivity analyses of the model inputs elucidated the processes significantly affecting pesticide runoff from rice farms. Pesticide adsorption and degradation rates of the soil did not significantly affect pesticide concentrations, although pesticide discharge to river water accounted for less than 50% of the total quantity of pesticide applied to fields, possibly owing to pesticide adsorption and degradation. The timing of increases in pesticide concentrations in river water was affected mostly by the farming schedule, including the time of pesticide application and irrigation, and secondarily by rainfall events.  相似文献   

4.
The aim of this work is to evaluate and discuss river water quality trends over the last decade in ten watersheds where diffuse pollution represents more than half of the annual load of phosphorus (P) and nitrogen (N). Trend analyses taking into account flow data indicate a significant reduction of total P in eight rivers, of ammonia N in five rivers, of nitrate + nitrite in four rivers, of total filtered N in three rivers and of suspended solids in two rivers. An increase of turbidity was observed in four rivers and, for fecal coliforms, no trends. P decrease can be explained by reduced mineral P inputs on cropped lands related to means such as agro-environmental fertilization plans and addition of phytase in pig and poultry feed. However, for seven of them, median P concentrations remain at least two times greater than the Québec water quality guideline for protection of rivers against eutrophication. Concentrations of other parameters remain problematic in some rivers too. These results indicate the need to continue the efforts for further diffuse pollution reduction. Future work should better quantify actions taken at the watershed scale to reduce diffuse pollution.  相似文献   

5.
The river Swale in Yorkshire, northern England has been the subject of many studies concerning water quality. This paper builds on existing data resources and previous 1D river water quality modelling applications at daily resolution (using QUESTOR) to provide a different perspective on understanding pollution, through simulation of the short‐term dynamics of nutrient transport along the river. The two main objectives are (1) building, calibration and evaluation of a detailed mathematical model (Advection‐Dispersion Model: ADModel), for nutrient transport under unsteady flow conditions and (2) the development of methods for estimating key parameters characterizing pollutant transport (velocity, dispersion coefficient and transformation rates) as functions of hydrological parameters and/or seasonality. The study of ammonium and nitrate has highlighted temporal variability in processes, with maximum nitrification and denitrification rates during autumn. Results show that ADModel is able to predict the main trend of measured concentration with reasonable accuracy and accounts for temporal changes in water flow and pollutant load along the river. Prediction accuracy could be improved through more detailed modelling of transformation processes by taking into account the variability of factors for which existing data were insufficient to allow representation. For example, modelling indicates that interactions with bed sediment may provide an additional source of nutrients during high spring flows. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
n this research the applicability of two different water quality concepts, a QUAL2E-based and a RWQM1-based water quality model is evaluated in terms of management decisions. The Dender river in Belgium serves as a case study for the application of the methodology. By using sensitivity analysis on both model concepts the important processes are revealed. Further, the differences between the predictions for a future scenario are analysed. The scenario chosen here is a reduction in fertiliser use of 90%, which reduces the diffuse pollution. This way, the advantages or disadvantages of using one concept against the other for this scenario are formulated. It was found that the QUAL-based models are more focussing on algae processes while the RWQM1 also takes into account processes in the sediment. Further the QUAL-based models are easier to calibrate, especially when only a small amount of data is available. Both concepts lead to more or less the same conclusions. However for some periods the differences become important and to reduce the uncertainty in those periods, more efforts should be spent in calibration and in better detection of parameters concerning sediment processes and diffusion.  相似文献   

7.
Diffuse pollution sources along a stream reach are very difficult to both monitor and estimate. In this paper, a systematic method using an optimal estimation algorithm is presented for simultaneous estimation of diffuse pollution and model parameters in a stream water quality model. It was applied with the QUAL2E model to the South Han River in South Korea for optimal estimation of kinetic constants and diffuse loads along the river. Initial calibration results for kinetic constants selected from a sensitivity analysis reveal that diffuse source inputs for nitrogen and phosphorus are essential to satisfy the system mass balance. Diffuse loads for total nitrogen and total phosphorus were estimated by solving the expanded inverse problem. Comparison of kinetic constants estimated simultaneously with diffuse sources to those estimated without diffuse loads, suggests that diffuse sources must be included in the optimization not only for its own estimation but also for adequate estimation of the model parameters. Application of the optimization method to river water quality modeling is discussed in terms of the sensitivity coefficient matrix structure.  相似文献   

8.
Uncertainty in water quality model predictions is inevitably high due to natural stochasticity, model uncertainty, and parameter uncertainty. An integrated modelling system (modified-BASINS) under uncertainty is described and demonstrated for use in receiving-water quality prediction and watershed management. A Monte Carlo simulation was used to investigate the effect of various uncertainty types on output prediction. Without pollution control measures in the watershed, the concentrations of total nitrogen (T-N) and total phosphorus (T-P) in the Hwaong Reservoir, considering three uncertainty types, would be less than about 4.4 and 0.23 mg L(-1), respectively, in 2012, with 90% confidence. The effects of two watershed management practices, wastewater treatment plants (WWTP) and constructed wetlands (WETLAND), were evaluated. The combined scenario (WWTP + WETLAND) was the most effective at improving reservoir water quality, bringing concentrations of T-N and T-P in the Hwaong Reservoir to less than 3.4 and 0.14 mg L(-1), 24 and 41% improvements, respectively, with 90% confidence. Overall, the Monte Carlo simulation in the integrated modelling system was practical for estimating uncertainty and reliable in water quality prediction. The approach described here may allow decisions to be made based on the probability and level of risk, and its application is recommended.  相似文献   

9.
The REGFLUD-project, commissioned by Germany's Federal Research Ministry (BMBF), addresses the problem of reducing diffuse pollution from agricultural production. The objective of the project is the development and application of multi-criteria scientific methods, which are able to predict diffuse pollution in river basins subject to economic feasibility and social acceptability. The selected river basins (Ems and Rhine basins) cover a variety of landscape units with different hydrological, hydrogeological and socio-economic characteristics. This paper focuses on the analysis of the effects of certain policy measures to reduce diffuse pollution by nitrogen. For this purpose a model system consisting of an agricultural sector model, a water balance model and a residence time/denitrification model was developed and applied. First results indicate a wide range of annual nitrogen surpluses for the rural areas between less than 10 kg N/ha up to 200 kg N/ha or more depending on the type and intensity of farming. Compared to the level of nitrogen surpluses the level of nitrogen inputs into the surface waters is relatively moderate because of degradation processes during transport in soil and groundwater. Policy impact analysis for a nitrogen tax and a limitation of the livestock density stress the importance of regionally tailored measures.  相似文献   

10.
11.
Chemical water quality determinants and river water fluorescence were determined on the River Tyne, northeast England. Statistically significant relationships between nitrate (r = 0.87), phosphate (r = 0.80), ammonia (r = 0.70), biochemical oxygen demand (BOD) (r = 0.85) and dissolved oxygen (r = -0.65) and tryptophan-like fluorescence intensity were observed. The strongest correlations are between tryptophan-like intensity and nitrate and phosphate, which in the Tyne catchment derive predominantly from point and diffuse source sewage inputs. The correlation between BOD and the tryptophan-like fluorescence intensity suggests that this fluorescence centre is related to the bioavailable or fluorescence intensity and ammonia concentration and dissolved oxygen. The weaker correlation with ammonia is due to good ammonia treatment within the wastewater treatment plants within the catchment, and that with dissolved oxygen due to the natural aeration of the river such that this is not a good indicator of water quality. Mean annual tryptophan-like fluorescence intensity, measured by both bench and portable spectrometers, agrees well with the General Water Quality Assessment as determined by the England and Wales environmental regulators, the Environment Agency.  相似文献   

12.
韩龙喜  李伟 《水利学报》2007,38(8):986-990
针对污水排放特征,将污染源分为连续排放型污染源和间隙排放型污染源。对连续排放型污染源,采用确定性方法定义污染源强;而对于间隙排放型污染源,运用不确定性理论,根据其排放污染源的随机统计特征,对污染源进行随机概化。将不确定性理论应用于多污染源随机排污对环境水体的水质影响分析,给出了基于不确定性理论的水质影响预测方法,建立了二维随机水质数学模型。并将该方法应用于某市水源地水质影响的随机分析,得到了在多污染源随机排放协同影响下水质浓度随机变化的统计特征。  相似文献   

13.
Soft computing models are known as an efficient tool for modelling temporal and spatial variation of surface water quality variables and particularly in rivers. These model’s performance relies on how effective their simulation processes are accomplished. Fuzzy logic approach is one of the authoritative intelligent model in solving complex problems that deal with uncertainty and vagueness data. River water quality nature is involved with high stochasticity and redundancy due to the its correlation with several hydrological and environmental aspects. Yet, the fuzzy logic theory can give robust solution for modelling river water quality problem. In addition, this approach likewise can be coordinated with an expert system framework for giving reliable and trustful information for decision makers in enhancing river system sustainability and factual strategies. In this research, different hybrid intelligence models based on adaptive neuro-fuzzy inference system (ANFIS) integrated with fuzzy c-means data clustering (FCM), grid partition (GP) and subtractive clustering (SC) models are used in modelling river water quality index (WQI). Monthly measurement records belong to Selangor River located in Malaysia were selected to build the predictive models. The modelling process was included several water quality terms counting physical, chemical and biological variables whereas WQI was the target variable. At the first stage of the research, statistical analysis for each water quality parameter was analyzed toward the WQI. Whereas in the second stage, the predictive models were established. The finding of the current research provides an authorized soft computing model to determine WQI that can be used instead of the conventional procedure that consumes time, cost, efforts and sometimes computation errors.  相似文献   

14.
15.
Physically-based mathematical water quality models are known as potentially effective tools to simulate the temporal and spatial variations of water quality variables along rivers. Each model relies on specific sets of assumptions and equations to simulate the physico-biochemical processes, which influence on its simulation results. This paper aims to improve the insight in the uncertainties related to state–of–the–art river physico-biochemical water quality modelling. Sensitivity analysis is applied to the processes implemented in three most popular commercial software packages: MIKE11, InfoWorks RS and InfoWorks ICM. This is done for the Molse Neet river case study. Firstly, the physico-biochemical processes are screened to obtain a preliminary assessment on the critical processes and to determine the processes that require more detailed comparison. Then, local sensitivity analysis is carried out to specify the sensitive parameters and processes. Results show that the hydrodynamic results, heat transfer rate and reaeration simulations cause large differences in model simulation outputs for water temperature and dissolved oxygen concentrations. The ignorance of processes related to sediment transport, phytoplankton and bacteria has a significant influence on the higher values of organic matter and lower values of dissolved oxygen concentrations. The three models show consensus on the main pollutant sources explaining organic matter and nitrate concentrations, but disagree on the main factors explaining the DO concentrations.  相似文献   

16.
根据设计流量,并结合水功能区划水质目标,在现状水功能区水质调查资料的基础上,采用相应的计算模型对保定市水功能区纳污能力进行计算,得到保定市水功能区纳污能力.该值与保定市现状污染物入河量进行比较,最后得出保定市水功能区污染物削减量,提出限制排污总量意见,从而进一步提高入河排污口监督管理水平,有效保护水环境.  相似文献   

17.
鉴于太子河流域水资源调控程度高、水污染严重、河流健康状况日趋恶化等特点,在综合考虑各种因素的基础上.采用一维水量水质耦合模型,模拟了太子河典型年的水动力和水质时空分布,系统分析了水文与污染负荷耦合的环境过程.在此基础上,根据太子河流域现状提出不同库群调度方案,评估了各方案下太子河的水质响应过程及其对沿程各站点水质环境的影响.  相似文献   

18.
Diffuse pollution is hard to analyze, control and manage by its nature. Watershed models and Geographical Information Systems (GIS) are recently developed tools that aid analysis of diffuse sources of pollution. However, their applications are not always easy and straightforward. Turkey is a typical example of a mountainous country rich in rivers and streams. Due to the complex geomorphology, land-use and agricultural practices in most of the watersheds in Turkey, modelling, analyzing and managing diffuse pollution has been a challenge. The complex watershed structure forces the modellers to work with spatially high resolution data. Apart from the data, the models themselves may also cause operational problems. These issues and their probable solutions form the basis of the discussions in this paper. It acts as a guideline for modelling and analyzing diffuse pollution by emphasizing the referred problems and difficulties. Design of an Information Technology-based system tool for watershed and/or water quality modelling, which would be suitable for countries having watersheds with similar structure and problems to those of Turkey, is also outlined.  相似文献   

19.
Porsuk Dam Reservoir (PDR), which is located on Porsuk River, is the main drinking water resource of Eskisehir City-Turkey. Both the river and the reservoir are under the threat of several domestic and industrial point sources and land-based diffuse pollution. The river water quality is very poor with high concentrations of nitrogen and phosphorus compounds at the entrance to Porsuk Reservoir. The reservoir shows symptoms of a hypertrophic lake. The expected responses of the whole river and reservoir system under different pollution control scenarios were estimated to develop plausible water quality management strategies. The adopted scenarios assumed different levels of treatment for the major domestic point sources that include conventional treatment and tertiary treatment. The contemporary Turkish Allowable Discharge Limits (ADLs) and the best available technology choices were the investigated treatment options for the major industries. The expected improvements of water quality characteristics under the management scenario options have been estimated by means of mathematical models. The model choices were the QUAL2E for the river and BATHTUB for the reservoir. Recommendations for different levels of treatment were derived in order to improve the water quality both within the river and in the reservoir.  相似文献   

20.
Urban rivers are essential in retaining nutrients, but little is known about nitrogen cycling in these rivers in semiarid areas. We measured chemical and isotopic compositions of ammonium (NH4(+)-N) and nitrate (NO3(-)-N) to investigate spatial-temporal variation of nitrogen cycling in the Fuhe River in the North China Plain. Nitrogen pollution in the river was mainly induced by extra NH4(+)-N inputs which come from the discharges of urban sewage and effluents of wastewater treatment plants in upstream. NH4(+)-N obtained from decomposing organic matter of sediments can diffuse into the overlying water. Intense nitrification then occurs at the terrestrial-aquatic interface. Due to less vegetation in spring and autumn, loss of NH4(+)-N is mainly caused by nitrification. In contrast, significant NH4(+)-N is absorbed by plants in summer. NO3(-)-N generated from nitrification can be denitrified during the study period. The highest NO3(-)-N loss (about 86.3%) was observed in summer. The contribution of NO3(-)-N loss due to denitrification is 44.6%. The remaining 55.4% is due to plant uptake. The results suggested that nitrogen cycling in the river is related to temperature and dry-wet cycles. And vegetation restoration along the river could benefit the incremental improvements to the aquatic ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号