首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Starfish oocytes are arrested at the G2/M-phase border of meiosis I. Exposure to their natural mitogen, 1-methyladenine (1-MA), leads to the activation of MPF and MAP kinase, resumption of the meiotic cell cycle, and fertilization competency. The 1-MA receptor has not yet been identified, but it is known to be linked functionally to a pertussis toxin-sensitive G-protein. G beta gamma appears to be the major effector of the 1-MA receptor, since injection of G beta gamma, but not activated G alpha i, leads to the activation of MPF, entry into meiosis, and oocyte maturation. The components that connect G beta gamma to MPF and MAP kinase activation in oocytes are unknown. In mammalian cells, a novel phosphatidylinositol 3-kinase, PI-3 kinase-gamma, links G beta gamma to the MAP kinase activation pathway. Here we show that PI-3 kinase is required for starfish oocyte maturation. LY294002 and wortmannin, inhibitors of PI-3 kinase, block MPF and MAP kinase activation and entry into meiosis. Inhibition by LY294002 is reversible and limited to the hormone-dependent period. Neither inhibitor, however, blocks the earliest hormone-induced event, formation of actin spikes at the cell membrane. By contrast, pertussis toxin blocks both actin spiking and later events, arguing that PI-3 kinase functions downstream of G beta gamma. Finally, we show that unlike the well-studied case in Xenopus oocytes, where MAP kinase is an essential component of the MPF activation pathway, MAP kinase is not required for either MPF activation or subsequent oocyte maturation in starfish. Instead, its major role appears to be suppression of DNA synthesis in unfertilized, haploid eggs.  相似文献   

2.
Phosphorylation of Thr161, a residue conserved in all members of the cdc2 family, has been reported to be absolutely required for the catalytic activity of cdc2, the major regulator of eukaryotic cell cycle. In the present work, we have purified from starfish oocytes a kinase that specifically activates cdc2 in a cyclin-dependent manner through phosphorylation of its Thr161 residue. Our most highly purified preparation contained only two major proteins of apparent M(r) 37 and 40 kDa (p37 and p40), which could not be separated from each other without loss of activity. The purified kinase was found to phosphorylate not only cdc2, but also cdk2 and a divergent cdc2-like protein from Caenorhabditis, in chimeric complexes including both mitotic and G1/S cyclins. Extensive microsequencing of p40 did not reveal any convincing homology with any known protein. In contrast, p37 is the starfish homologue of the M015 gene product, a kinase previously cloned by homology probing from a Xenopus cDNA library. As expected, immunodepletion of the MO15 protein depleted Xenopus egg extracts of CAK (cdk-activating kinase) activity, which was recovered in immunoprecipitates. Taken together, the above results demonstrate that MO15 is a gene conserved throughout evolution (at least from echinoderms to vertebrates) that encodes the catalytic subunit of a protein kinase that activates cdc2-cdks complexes through phosphorylation of Thr161 (or its homologues).  相似文献   

3.
In starfish, fertilization occurs naturally at late meiosis I. In the absence of fertilization, however, oocytes complete meiosis I and II, resulting in mature eggs arrested at the pronucleus stage, which are still fertilizable. In this study, we isolated cDNAs of starfish cyclin A and Cdc2, and monitored extensively the cell cycle dynamics of cyclin A and cyclin B levels and their associated Cdc2 kinase activity, Tyr phosphorylation of Cdc2, and Cdc25 phosphorylation states throughout meiotic and early embryonic cleavage cycles in vivo. In meiosis I, cyclin A was undetectable and cyclin B/Cdc2 alone exhibited histone H1 kinase activity, while thereafter both cyclin A/Cdc2 and cyclin B/Cdc2 kinase activity oscillated along with the cell cycle. Cyclin B-, but not cyclin A-, associated Cdc2 was subjected to regulation via Tyr phosphorylation, and phosphorylation states of Cdc25 correlated with cyclin B/Cdc2 kinase activity with some exceptions. Between meiosis I and II and at the pronucleus stage, cyclin A and B levels remained low, Cdc2 Tyr phosphorylation was undetectable, and Cdc25 remained phosphorylated depending on MAP kinase activity, showing a good correlation between these two stages. Upon fertilization of mature eggs, Cdc2 Tyr phosphorylation reappeared and Cdc25 was dephosphorylated. In the first cleavage cycle, under conditions which prevented Cdc25 activity, cyclin A/Cdc2 was activated with a normal time course and then cyclin B/Cdc2 was activated with a significant delay, resulting in the delayed completion of M-phase. Thus, in contrast to meiosis I, both cyclin A and cyclin B appear to be involved in the embryonic cleavage cycles. We propose that regulation of cyclin A/Cdc2 and cyclin B/Cdc2 is characteristic of meiotic and early cleavage cycles.  相似文献   

4.
In eucaryotes, M-phase promoting factor (MPF) triggers meiosis in germ cells and mitosis in somatic cells. MPF is composed of two proteins of which one is homologous with the protein kinase encoded by gene cdc2 of Schizosaccharomyces pombe (p34cdc2) and the other is a cyclin whose concentration oscillates during the cell cycle. Inactivation of p34cdc2 (MPF) requires cyclin degradation, which occurs during the metaphase-anaphase transition of the M-phase. Cyclin degradation is not only associated with cell cycle progression, but is also required for this event. At the G2/M transition, p34cdc2 protein kinase is activated and catalyzes phosphorylation of numerous key proteins, thus enabling cell changes to occur. p34cdc2 undergoes multiple-site phosphorylation in a cell cycle-dependent manner. At onset of mitosis, the protein phosphatase cdc25 catalyzes dephosphorylation of the p34cdc2 kinase at the threonine 14 and tyrosine 15 sites. This event may be the rate-limiting step controlling onset of mitosis in cells of vertebrates. A second protein kinase, encoded by the proto-oncogene c-mos, acts as a cytostatic factor preventing cyclin degradation and keeping unfertilized eggs from progressing beyond the second meiotic metaphase.  相似文献   

5.
The G2-M transition of the cell cycle is triggered by the p34(cdc2)/cyclin B kinase. During the prophase/metaphase transition, the inactive, Thr-14/Tyr-15 phosphorylated form of p34(cdc2) (TP-YP) is modified to an active, Thr-14/Tyr-15 dephosphorylated form (T-Y) by the cdc25 dual-specificity phosphatase. Using highly synchronized starfish oocytes as a cellular model, we show that dephosphorylation in vivo and in vitro occurs in two steps: Thr-14 dephosphorylation precedes Tyr-15 dephosphorylation. The transient intermediate form (T-YP), which can be obtained in vitro by treatment of TP-YP by protein phosphatase 2A, displays low but significant kinase activity. These results raise the possibility that the intermediate form T-YP may be involved in the autocatalytic amplification of the p34(cdc2)/cyclin B complex through phosphorylation/activation of the cdc25 phosphatase and phosphorylation/inactivation of the wee1 kinase.  相似文献   

6.
Previous work has established that activation of Mos, Mek, and p42 mitogen-activated protein (MAP) kinase can trigger release from G2-phase arrest in Xenopus oocytes and oocyte extracts and can cause Xenopus embryos and extracts to arrest in mitosis. Herein we have found that activation of the MAP kinase cascade can also bring about an interphase arrest in cycling extracts. Activation of the cascade early in the cycle was found to bring about the interphase arrest, which was characterized by an intact nuclear envelope, partially condensed chromatin, and interphase levels of H1 kinase activity, whereas activation of the cascade just before mitosis brought about the mitotic arrest, with a dissolved nuclear envelope, condensed chromatin, and high levels of H1 kinase activity. Early MAP kinase activation did not interfere significantly with DNA replication, cyclin synthesis, or association of cyclins with Cdc2, but it did prevent hyperphosphorylation of Cdc25 and Wee1 and activation of Cdc2/cyclin complexes. Thus, the extracts were arrested in a G2-like state, unable to activate Cdc2/cyclin complexes. The MAP kinase-induced G2 arrest appeared not to be related to the DNA replication checkpoint and not to be mediated through inhibition of Cdk2/cyclin E; evidently a novel mechanism underlies this arrest. Finally, we found that by delaying the inactivation of MAP kinase during release of a cytostatic factor-arrested extract from its arrest state, we could delay the subsequent entry into mitosis. This finding suggests that it is the persistence of activated MAP kinase after fertilization that allows the occurrence of a G2-phase during the first mitotic cell cycle.  相似文献   

7.
At fertilization, sea urchin eggs undergo a series of activation events, including a Ca2+ action potential, Ca2+ release from the endoplasmic reticulum, an increase in intracellular pH, sperm pronuclear formation, MAP kinase dephosphorylation, and DNA synthesis. To examine which of these events might be initiated by activation of phospholipase Cgamma (PLCgamma), which produces the second messengers inositol trisphosphate (IP3) and diacylglycerol, we used recombinant SH2 domains of PLCgamma as specific inhibitors. Sea urchin eggs were co-injected with a GST fusion protein composed of the two tandem SH2 domains of bovine PLCgamma and (1) Ca2+ green dextran to monitor intracellular free Ca2+, (2) BCECF dextran to monitor intracellular pH, (3) Oregon Green dUTP to monitor DNA synthesis, or (4) fluorescein 70-kDa dextran to monitor nuclear envelope formation. Microinjection of the tandem SH2 domains of PLCgamma produced a concentration-dependent inhibition of Ca2+ release and also inhibited cortical granule exocytosis, cytoplasmic alkalinization, MAP kinase dephosphorylation, DNA synthesis, and cleavage after fertilization. However, the Ca2+ action potential, sperm entry, and sperm pronuclear formation were not prevented by injection of the PLCgammaSH2 domain protein. Microinjection of a control protein, the tandem SH2 domains of the phosphatase SHP2, had no effect on Ca2+ release, cortical granule exocytosis, DNA synthesis, or cleavage. Specificity of the inhibitory action of the PLCgammaSH2 domains was further indicated by the finding that microinjection of PLCgammaSH2 domains that had been point mutated at a critical arginine did not inhibit Ca release at fertilization. Additionally, Ca2+ release in response to microinjection of IP3, cholera toxin, cADP ribose, or cGMP was not inhibited by the PLCgammaSH2 fusion protein. These results indicate that PLCgamma plays a key role in several fertilization events in sea urchin eggs, including Ca2+ release and DNA synthesis, but that the action potential, sperm entry, and male pronuclear formation can occur in the absence of PLCgamma activation or Ca2+ increase.  相似文献   

8.
9.
Nuclear extracts from Saccharomyces cerevisiae cells synchronized in S phase support the semiconservative replication of supercoiled plasmids in vitro. We examined the dependence of this reaction on the prereplicative complex that assembles at yeast origins and on S-phase kinases that trigger initiation in vivo. We found that replication in nuclear extracts initiates independently of the origin recognition complex (ORC), Cdc6p, and an autonomously replicating sequence (ARS) consensus. Nonetheless, quantitative density gradient analysis showed that S- and M-phase nuclear extracts consistently promote semiconservative DNA replication more efficiently than G1-phase extracts. The observed semiconservative replication is compromised in S-phase nuclear extracts deficient for the Cdk1 kinase (Cdc28p) but not in extracts deficient for the Cdc7p kinase. In a cdc4-1 G1-phase extract, which accumulates high levels of the specific Clb-Cdk1 inhibitor p40(SIC1), very low levels of semiconservative DNA replication were detected. Recombinant Clb5-Cdc28 restores replication in a cdc28-4 S-phase extract yet fails to do so in the cdc4-1 G1-phase extract. In contrast, the addition of recombinant Xenopus CycB-Cdc2, which is not sensitive to inhibition by p40(SIC1), restores efficient replication to both extracts. Our results suggest that in addition to its well-characterized role in regulating the origin-specific prereplication complex, the Clb-Cdk1 complex modulates the efficiency of the replication machinery itself.  相似文献   

10.
We studied the effect of doxorubicin (Dox) on cell cycle progression and its correlation with DNA damage and cytotoxicity in p53-mutant P388 cells. P388 cells synchronized in S and G2/M phases were > 3-fold more sensitive to Dox than were cells in G1 phase (Dox ID50 = 0.50 +/- 0.16 microM in cells synchronized in S phase versus 1.64 +/- 0.12 microM in asynchronized cells; drug exposure, 1 hr). Treatment of synchronized cells in early S phase with 1 microM Dox (2 x ID50) for 1 hr induced a marked cell arrest at G2/M phase at 6-12 hr after drug incubation. We then studied the effect of Dox on the p34cdc2/cyclin B1 complex because it plays a key role in regulating G2/M phase transition. In untreated control P388 cells, p34cdc2 kinase localizes in the nucleus and cytoplasms, particularly in the centrosomes, and p34cdc2 kinase activity is dependent on cell cycle progression, with the enzyme activity increasing steadily from G1/S to G2/M and markedly declining thereafter. Treatment of synchronized P388 cells in early S phase with 1 microM Dox for 1 hr did not affect the pattern of subcellular distribution of the enzyme but completely abrogated its function for > or = 10 hr. In a cell-free system, Dox did not inhibit p34cdc2 kinase activity, indicating that is has no direct effect on the enzyme function. In whole cells, Dox treatment prevented p34cdc2 kinase dephosphorylation without altering its synthesis, and this effect was due to neither down-regulation of cdc25C nor inhibition of protein-tyrosine phosphatase activity. In contrast, Dox treatment was found to induced cyclin B1 accumulation as a result of stimulating its synthesis and inhibiting its degradation. A good correlation was found between extent of DNA double-strand breaks and p34cdc2 kinase activity inhibition. Our results suggest that anthracycline-induced cytotoxicity is cell cycle dependent and is mediated, at least in part, by disturbance of the regulation of p34cdc2/cyclin B1 complex, thus leading to G2/M phase arrest.  相似文献   

11.
In diapausing eggs of the silkworm Bombyx mori, embryonic cells are arrested at G2 phase. The ability to undertake cell division is resumed in the course of diapause termination caused by such a treatment as acclimation to 5 degrees C. As an initial trial to investigate the relationship between diapause and embryonic cell cycling, we have cloned and sequenced two Bombyx cDNAs encoding two distinct cdc2-related Ser/Thr protein kinases. One (Bm cdc2) encoded a 37.0 kDa protein which had all of the domains characteristic of other Cdc2 kinase. The other (Bcdrk) encoded a 45.1 kDa protein that was most similar to Drosophila and human cdc2-related protein kinases (Dcdrk protein and PISSRLE kinase). Northern blot analysis was carried out to examine levels of Bm cdc2 and Bcdrk mRNA during embryogenesis of non-diapause eggs. The result demonstrated that the mRNA level of Bm cdc2 appeared to correspond to the activity of nuclear/cellular division in non-diapause eggs, and that the developmental profile in the level of Bcdrk mRNA was somewhat different from that of Bm cdc2 mRNA.  相似文献   

12.
The fission yeast gene cdc18(+) is required for entry into S phase and for coupling mitosis to the successful completion of S phase. Cdc18 is a highly unstable protein that is expressed only once per cell cycle at the G1/S boundary. Overexpression of Cdc18 causes a mitotic delay and reinitiation of DNA replication, suggesting that the inactivation of Cdc18 plays a role in preventing rereplication within a given cell cycle. In this paper, we present evidence that Cdc18 is associated with active cyclin-dependent kinase in vivo. We have expressed Cdc18 as a glutathione S-transferase fusion in fission yeast and demonstrated that the fusion protein is functional in vivo. We find that the Cdc18 fusion protein copurifies with a kinase activity capable of phosphorylating histone H1 and Cdc18. The activity was identified by a variety of methods as the cyclin-dependent kinase containing the product of the cdc2(+) gene. The amino terminus of Cdc18 is required for association with cyclin-dependent kinase, but the association does not require the consensus cyclin-dependent kinase phosphorylation sites in this region. Additionally, both G1/S and mitotic forms of cyclin-dependent kinase phosphorylate and interact with Cdc18. These interactions between Cdc18 and cyclin-dependent kinases suggest mechanisms by which cyclin-dependent kinases could activate the initiation of DNA replication and could prevent rereplication.  相似文献   

13.
Checkpoints maintain the dependency relationships between discrete events in the cell cycle (for example, ensuring mitosis does not occur before DNA replication is complete). In Schizosaccharomyces pombe, mitotic checkpoints monitor DNA synthesis and the presence of DNA damage. The replication-dependent mitotic checkpoint prevents mitosis by inactivating p34cdc2 kinase. The mechanism by which the DNA damage checkpoint interacts with the mitotic machinery is distinct from that used by the replication checkpoint. The activity of p34cdc2 is controlled, in part, by the wee1 protein kinase, which inactivates cdc2 through phosphorylation at tyrosine-15 (ref. 7). Here we report normal mitotic arrest after DNA damage in S. pombe cells in which the wee1 gene is defective or missing. We suggest why these findings contradict a recent report which suggested that the wee1 gene product was required for DNA damage-dependent mitotic arrest.  相似文献   

14.
15.
The Schizosaccharomyces pombe win1-1 mutant has a defect in the G2-M transition of the cell cycle. Although the defect is suppressed by wis1+ and wis4+, which are components of a stress-activated MAP kinase pathway that links stress response and cell cycle control, the molecular identity of Win1 has not been known. We show here that win1+ encodes a polypeptide of 1436 residues with an apparent molecular size of 180 kDa and demonstrate that Win1 is a MAP kinase kinase kinase that phosphorylates and activates Wis1. Despite extensive similarities between Win1 and Wis4, the two MAP kinase kinase kinases have distinct functions. Wis4 is able to compensate for loss of Win1 only under unstressed conditions to maintain basal Wis1 activity, but it fails to suppress the osmosignaling defect conferred by win1 mutations. The win1-1 mutation is a spontaneous duplication of 16 nucleotides, which leads to a frameshift and production of a truncated protein lacking the kinase domain. We discuss the cell cycle phenotype of the win1-1 cdc25-22 wee1-50 mutant and its suppression by wis genes.  相似文献   

16.
A semipermissive growth condition was defined for a Schizosaccharomyces pombe strain carrying a thermosensitive allele of DNA polymerase delta (pol delta ts03). Under this condition, DNA polymerase delta is semidisabled and causes a delay in S-phase progression. Using a genetic strategy, we have isolated a panel of mutants that enter premature mitosis when DNA replication is incomplete but which are not defective for arrest in G2/M following DNA damage. We characterized the aya14 mutant, which enters premature mitosis when S phase is arrested by genetic or chemical means. However, this mutant is sensitive to neither UV nor gamma irradiation. Two genomic clones, rad26+ and cds1+, were found to suppress the hydroxyurea sensitivity of the aya14 mutant. Genetic analysis indicates that aya14 is a novel allele of the cell cycle checkpoint gene rad26+, which we have named rad26.a14. cds1+ is a suppressor which suppresses the S-phase feedback control defect of rad26.a14 when S phase is inhibited by either hydroxyurea or cdc22, but it does not suppress the defect when S phase is arrested by a mutant DNA polymerase. Analyses of rad26.a14 in a variety of cdc mutant backgrounds indicate that strains containing rad26.a14 bypass S-phase arrest but not G1 or late S/G2 arrest. A model of how Rad26 monitors S-phase progression to maintain the dependency of cell cycle events and coordinates with other rad/hus checkpoint gene products in responding to radiation damage is proposed.  相似文献   

17.
This study examines the effects of protein kinase inhibitors and activator on angiotensin II-induced DNA synthesis and protein synthesis of rat aortic smooth muscle cells. In quiescent confluent cells, angiotensin II induced a concentration-dependent increase in thymidine incorporation and leucine incorporation. The tyrosine kinase inhibitor genistein caused an inhibition of the angiotensin II-induced DNA synthesis but not of the agent-induced protein synthesis. The protein kinase C inhibitors staurosporine and calphostin C caused an inhibition of the angiotensin II-induced protein synthesis but not of the agent-induced DNA synthesis. The protein kinase C activator phorbol 12-myristate 13-acetate stimulated protein synthesis. Angiotensin II stimulated mitogen-activated protein (MAP) kinases and the angiotensin II-induced MAP kinase activation was inhibited by genistein but not by staurosporine. These findings suggest that angiotensin II-induced DNA synthesis is at least partly mediated via protein-tyrosine phosphorylation and angiotensin II-induced protein synthesis is at least partly mediated by activation of protein kinase C. It seems likely that MAP kinase activation is involved in DNA synthesis but not in protein synthesis induced by angiotensin II.  相似文献   

18.
19.
To study the mechanisms involved in the progression of meiotic maturation in the mouse, we used oocytes from two strains of mice, CBA/Kw and KE, which differ greatly in the rate at which they undergo meiotic maturation. CBA/Kw oocytes extrude the first polar body about 7 hours after breakdown of the germinal vesicle (GVBD), whilst the oocytes from KE mice take approximately 3-4 hours longer. In both strains, the kinetics of spindle formation are comparable. While the kinetics of MAP kinase activity are very similar in both strains (although slightly faster in CBA/Kw), the rise of cdc2 kinase activity is very rapid in CBA/Kw oocytes and slow and diphasic in KE oocytes. When protein synthesis is inhibited, the activity of the cdc2 kinase starts to rise but arrests shortly after GVBD with a slightly higher level in CBA/Kw oocytes, which may correspond to the presence of a larger pool of cyclin B1 in prophase CBA/Kw oocytes. After GVBD, the rate of cyclin B1 synthesis is higher in CBA/Kw than in KE oocytes, whilst the overall level of protein synthesis and the amount of messenger RNA coding for cyclin B1 are identical in oocytes from both strains. The injection of cyclin B1 messenger RNA in KE oocytes increased the H1 kinase activity and sped up first polar body extrusion. Finally, analysis of the rate of maturation in hybrids obtained after fusion of nuclear and cytoplasmic fragments of oocytes from both strains suggests that both the germinal vesicle and the cytoplasm contain factor(s) influencing the length of the first meiotic M phase. These results demonstrate that the rate of cyclin B1 synthesis controls the length of the first meiotic M phase and that a nuclear factor able to speed up cyclin B synthesis is present in CBA/Kw oocytes.  相似文献   

20.
It is possible to cause G2 arrest in Aspergillus nidulans by inactivating either p34cdc2 or NIMA. We therefore investigated the negative control of these two mitosis-promoting kinases after DNA damage. DNA damage caused rapid Tyr15 phosphorylation of p34cdc2 and transient cell cycle arrest but had little effect on the activity of NIMA. Dividing cells deficient in Tyr15 phosphorylation of p34cdc2 were sensitive to both MMS and UV irradiation and entered lethal premature mitosis with damaged DNA. However, non-dividing quiescent conidiospores of the Tyr15 mutant strain were not sensitive to DNA damage. The UV and MMS sensitivity of cells unable to tyrosine phosphorylate p34cdc2 is therefore caused by defects in DNA damage checkpoint regulation over mitosis. Both the nimA5 and nimT23 temperature-sensitive mutations cause an arrest in G2 at 42 degrees C. Addition of MMS to nimT23 G2-arrested cells caused a marked delay in their entry into mitosis upon downshift to 32 degrees C and this delay was correlated with a long delay in the dephosphorylation and activation of p34cdc2. Addition of MMS to nimA5 G2-arrested cells caused inactivation of the H1 kinase activity of p34cdc2 due to an increase in its Tyr15 phosphorylation level and delayed entry into mitosis upon return to 32 degrees C. However, if Tyr15 phosphorylation of p34cdc2 was prevented then its H1 kinase activity was not inactivated upon MMS addition to nimA5 G2-arrested cells and they rapidly progressed into a lethal mitosis upon release to 32 degrees C. Thus, Tyr15 phosphorylation of p34cdc2 in G2 arrests initiation of mitosis after DNA damage in A. nidulans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号