首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

CeO2 and SrBi2Ta2O9 (SBT) thin films for MFISFET (metal-fcrroelectrics-insulator-semiconductor field effect transistor) were deposited by rf sputtering and pulsed laser deposition method, respectively. The effects of oxygen partial pressure during deposition for CeO2 films were investigated. The oxygen partial pressure significantly affected the preferred orientation, grain size and electrical properties of CeO2 films. The CeO2 thin films with a (200) preferred orientation were deposited on Si(100) substrates at 600°C. The films deposited under the oxygen partial pressure of 50 % showed the best C-V characteristics among those under various conditions. The leakage current density of films showed order of the 10?7~10?8 A/cm2 at 100 kV/cm. The SBT thin films on CeO2/Si substrate showed dense microstructure of polycrystalline phase. From the C-V characteristics of MFIS structure composed of the SBT film annealed at 800°C, the memory window width was 0.9 V at ±5 V. The leakage current density of Pt/SBT/CeO2/Si structure annealed at 800°C was 4×10?7 A/cm2 at 5 V.  相似文献   

2.
Abstract

The ferroelectric SBT films were deposited on Pt/Ti/SiO2/Si substrates by liquid injection metalorganic chemical vapor deposition (MOCVD) with single-mixture solution of Sr[Ta(OEt)5(dmae)]2 and Bi(C6H5)3. The Sr/Ta and Bi/Ta ratio in SBT films depended on deposition temperature and mol ratio of precursor in the single-mixture solution. At the substrate temperature of 400°C, Sr/Ta and Bi/Ta ratio were close to 0.4 and 1 at precursor mol ratio of 0.5~1.0. As-deposited film was amorphous. However, after annealing at 750°C for 30 min in oxygen atmosphere, the diffraction patterns indicated polycrystalline SBT phase. The remanent polarization (Pr) and coercive field (Ec) of SBT film annealed at 750°C were 4.7 μC/cm2and 115.7 kV/cm at an applied voltage of 5 V, respectively. The SBT films annealed at 750°C showed practically no polarization fatigue up to 1010 switching cycles.  相似文献   

3.
Abstract

The dependence of morphology of SrBi2Ta2O9 (SBT) deposited by Metal Organic Decomposition (MOD) on film thickness and annealing temperature during the crystallization anneal was investigated. From Atomic Force Microscope (AFM) images of these films it can be seen that nucleation and grain growth strongly depends on SBT thickness which also affects the electrical characteristics of the correspondent Pt/SBT/Pt-capacitors. In this work results of a morphological study of SBT films with thicknesses between 40 and 110nm and annealing temperatures between 650°C and 725°C will be presented.  相似文献   

4.
Si-added SrBi2Ta2O9 (SBT) ferroelectric films were prepared by RF magnetron sputtering on a Pt/Ti/SiO2/Si (100) structure. The films were deposited at temperatures below 100°C for surpressing Bi evaporation, and crystallized at 800°C in air. A typical composition was Sr0.79Bi2.37Ta2.00Si0.2Ox. The remanent polarization value (2Pr) of the Si-added SBT film was 16 μC/cm2. The Si atom addition was found to be effective in improvement of the fatigue and leakage current of SBT ferroelectric films. The leakage current density was further improved by annealing in the high-pressure oxygen ambient at 7 atms.  相似文献   

5.
To obtain a metal–ferroelectric–insulator–semiconductor (MFIS) structure, we fabricated ferroelectric SrBi2Ta2O9 (SBT) film on a p-type Si (100) wafer with a LaZrO x (LZO) buffer layer by means of a sol–gel technique. The sol–gel deposited LZO film according to the different annealing temperatures had a good surface morphology even though the crystalline phase was not an amorphous phase. In particular, the root-mean-squared (RMS) surface roughness of the 750-°C-annealed LZO film was about 0.365 nm and its leakage current density was about 8.2?×?10?7 A/cm2 at 10 V. A Au/SBT/LZO/Si structure with different SBT film was fabricated. The CV characteristics of the Au/SBT/LZO/Si structure showed a clockwise hysteresis loop. The memory window width increased as the SBT film thickness increased. The 600-nm-thick SBT film was crystallized in a polycrystalline phase with a highly preferred (115) orientation. The memory window width of the 600-nm-thick SBT film was about 1.94 V at the bias sweep voltage ±9 V and the leakage current density was about 6.48?×?10?8 A/cm2 at 10 V.  相似文献   

6.
Abstract

Sol-gel solutions were synthesized by using various alkoxides of polyhydric alcohol, carboxylate and stabilizer. Stability of modified sol-gel solution was good enough to keep its properties after at least three months although that of ordinary sol-gel solution is not good.

SBT films were fabricated on Pt(200nm)/Ti(20nm)SiO2(500nm)/Si substrate at under 700°C by using modified sol-gel solution. Range of drying temperature was 200 to 400°C and that of RTA was 550 to 700°C. At high drying temperature, decrease of crystallinity for SBT films was observed accompanied by nucleation of Sr carbonate. On the other hand, SBT film dried at under 250°C and crystallized at 700°C shows high crystallinity of layer perovskite.

SBT film derived from conventional sol-gel solution used to show strong crystal orientation of c-axis. In case of modified sol-gel solution, RTA temperature and amount of added stabilizer influenced crystal orientation of film. So it was possible that to control crystal orientation of SBT films by adjust RTA condition and amount of stabilizer. Stability of sol-gel solution and property of SBT films were influenced by component of solvent, electric properties of SBT films especially I-V property were improved.

Using low temperature deposition process at 650°C, SBT films derived from modified sol-gel solution show superior ferroelectric properties to SBT thin films derived from conventional MOD solution.  相似文献   

7.
Abstract

At crystallization temperatures of about 800°C bismuth layered oxide SrBi2Ta2O9 (SBT) deposited by MOD develops good ferroelectric properties for use in FeRAM devices. But scaling down the film thickness of SBT below 150 nm only shorts are measured at this crystallization temperture after top electrode deposition. Working Pt/SBT/Pt-capacitors are achieved by reducing the crystallization temperature. Also temperatures of 800°C are too high for integration of the SBT module in a stacked capacitor architecture for high density memory devices. Therefore, a process is needed to reduced the crystllization temperature of SBT, called ”Low Temperature Process“.

In this work the electric properties of spin-on processed SBT crystallized in a temperature window from 650°C up to 800°C are investigated. As shown by XRD, transtion of the nonferroelectric Fluorite phase to the Aurivillius phase takes place at approximately 625°C. Increasing the cystallization temperature gives better crystaallized SBT films with bigger SBT graains. However, film prosity is also increasing with temperature. Electrical results of stoichiometric variations of SBT are presented. SEM pictures show that cluster formation is correlated with less film porosity at lower temperatures.  相似文献   

8.
Abstract

SrBi2Ta2O9 (SBT) is an attractive material for nonvolatile ferroelectric memory applications. In this paper we report on the deposition of highly epitaxial and smooth SrBi2Ta2O9 films on (110) SrTiO3substrates. The films were grown by pulsed laser deposition at temperatures ranging from 600 to 800°C and at various laser fluences from a Bi-excess SBT target. The background oxygen pressure was maintained at 28 Pa during the film deposition. Structural characterization of the films was performed by x-ray diffraction. Atomic force microscopy was used to investigate morphology and growth of the films. The films grew with preferred (115) or (116) orientation. The roughness was of the order of unit cell height. The films display a growth pattern resulting in corrugated film morphology.  相似文献   

9.
Tin oxide thin films were deposited on the R-cut sapphire substrate by the electron-beam evaporation of a ceramic SnO2 source. X-ray diffraction and transmission electron microscopy studies revealed that the films deposited at lower temperatures were amorphous while those grown at temperatures above 350°C consisted of the -SnO phase with the PbO type structure. Epitaxial -SnO films on the R-cut sapphire substrate were obtained when deposited at 600°C. Atomic force microscopy studies showed that films deposited at low temperature have a smooth surface, while epitaxial SnO films deposited at high temperatures (above 600°C) have a relatively rough surface. The atomic mobilities in the films at the various deposition temperatures and the lattice mismatch between the films and the substrates ultimately determine the microstructure and surface mophology. X-ray photoelectron spectroscopy analysis shows that the Sn/O ratios are 52.7/47.6 for the amorphous film deposited at the ambient temperature (30°C), 48.8/51.2 for the films deposited at 350°C, and 49.2/50.8 for the epitaxial film deposited at 600°C. Electrical properties were determined by four point probe measurements.  相似文献   

10.
Ferroelectric SrBi2Ta2O9 (SBT) films on a p-type Si (100) wafer with a LaZrO x (LZO) buffer layer have been fabricated to form a metal-ferroelectric-insulator–semiconductor (MFIS) structure. The LZO thin film and SBT films were deposited by using a sol–gel method. The equivalent oxide thickness (EOT) value of the LZO thin film was about 8.83 nm. Also, the leakage current density of the LZO thin film is about 3.3?×?10?5 A/cm2 at bias sweeping voltage of ±5 V. SBT films were crystallized in polycrystalline phase with highly preferred (115) orientation. Also, the intensity of each pick slightly increased as thickness of SBT films increased. The CV characteristics of Au/SBT/LZO/Si structure showed clockwise hysteresis loop. The memory window width increased as the thickness of SBT films increased. The leakage current density of Au/SBT/LZO/Si structure decreased as thickness of SBT films increased.  相似文献   

11.
Ferroelectric thin films of SrBi 2 Ta 2 O 9 (SBT) and (Sr 0.8 Ca 0.2 )Bi 2 Ta 2 O 9 (SCBT) were grown on platinized silicon substrates by using pulsed laser deposition technique. The effect of annealing temperature on the structural and electrical properties of the films was studied. Films were grown at 200 mTorr oxygen pressure with a constant substrate temperature at 500°C and annealed at different temperatures ranging from 700-800 °C in an oxygen ambient. X-ray diffraction data showed that as-grown films were crystalline nature. Atomic force micrographs showed that the grain size and surface roughness increased with increase in annealing temperature. The SBT films annealed at 800 °C showed ferroelectric properties with remanent polarization of 9.1 w C/cm 2 and coercive field of nearly 72 kV/cm. Whereas the SCBT films showed maximum remanent polarization of 7.3 w C/cm 2 with higher coercive field of 86 kV/cm. The higher coercive field in case of SCBT is attributed to the higher electronegativity of partially substituted Ca at Sr site. The dielectric constant increased with increase in annealing temperature and was attributed to the higher grain size.  相似文献   

12.
Abstract

In this work, the microstructural defects in SrBi2Ta2O9 (SBT) ferroelectric thin films were investigated at the atomic-scale by high-resolution transmission electron microscopy (HRTEM). A stacking fault with an extra inserted Bi-O plane normal to the c-axis was observed in SBT film with 10mol% excess bismuth prepared by metalorganic deposition. Edge dislocations with an average space about 3nm were observed at the small misorientation angle (8.2°) tilt grain boundary of SBT film with (001)-orientation prepared by pulsed laser deposition. The Burgers vector b for the edge dislocation was determined to be 1/2[110]α0, where α0 is the parameter of SBT unit cell. Chemical compositions of grains and grain boundaries in SBT films annealed in forming gas at 450°C and 500°C for 60 minutes were analyzed by using energy dispersive spectra at the nano-scale. Effects of the microstructural defects and microchemistry of the grain boundaries on the leakage current of SBT films are briefly discussed.  相似文献   

13.
Growth of SrBi2Ta2O9 (SBT) thin films has been carried out in the presence of O2-plasma created by applying a potential at an auxiliary ring electrode placed near the substrate. Effect of plasma excitation potential and polarity, especially negative polarity, on the formation of a proper SBT phase at 700°C and in modifying crystallite orientation and microstructure of SBT films over (1 1 1) oriented Pt film coated over TiO2/SiO2/Si(1 0 0) substrates has been demonstrated. Preferred c-axis orientation of SBT films changes to (a–b) orientation with decrease in plasma excitation potential from –700 to –350 V and eliminates secondary Bi2Pt phase formation even at 600°C Microstructural study show a 2-dimensional large flat c-oriented crystallites formed at –700 V change to small crystallites in conformity with the changed aspect ratio for crystallites in (a–b) plane parallel to film plane. Spectroscopic ellipsometric results are in agreement with the microstructural data. These affects are attributed to O2-ion bombardment during film growth which reduces nucleation barrier for growth of crystallites in (a–b) plane. O2-plasma sustains the cationic species formed by laser ablation, which along with O 2 + ions, provide necessary activation energy and enhance the oxidation rates required for SBT phase formation even at 700°C. SBT films grown in O2-plasma show enhancement in remnant polarization value from 1.2 to 6.6 C/cm2 and display ferroelectric properties superior to those formed without plasma. Further O2-plasma eliminates post deposition annealing step for observance of enhanced polarization values. This study shows O2-plasma excitation potential could be exploited as a new process parameter in laser ablation growth of ferroelectric oxide thin films.  相似文献   

14.
Abstract

The reaction of tantalum ethoxide with a glycol solvent produces the interchange of the ethoxide groups with the glycol. As a result, a polymeric derivative is formed with a high resistance towards hydrolysis. Compounds of Sr(II) and Bi(II) can be added to this Ta-glycol sol, leading to strontium bismuth tantalate (SBT) precursor solutions stable in air. These solutions were spin-coated onto two substrates: Pt/TiO2/SiO2/(100)Si and Ti/Pt/Ti/SiO2/(100)Si. Crystallisation of the SBT phase was carried out by a first formation of a fluorite phase that evolves to the layered perovskite at temperatures over 600°C. During crystallisation, a larger tendency to the formation of a substrate/film interface was observed in the films deposited onto Ti/Pt/Ti/SiO2/(100)Si than onto Pt/TiO2/SiO2/(100)Si. A remanent polarisation of Pr5 μC/cm2 and a coercive field of Ec <100 kV/cm were measured in the films on Pt/TiO2/SiO2/(100)Si. These films retain its remanent polarisation, Pr, up to 105seconds and are fatigue-free up to 109 cycles.  相似文献   

15.
Abstract

We demonstrate the ferroelectric behavior of Sr0.8Bi2.2Ta2O9 (SBT) films grown on Si(100) substrates by using lanthanum aluminate (LaAlO3) buffer layers. LaAlO3 films were prepared by vacuum evaporation method. Then, they were subjected to ex situ dry N2 annealing in a rapid thermal annealing (RTA) furnace. From the capacitance-voltage (C-V) measurement, the dielectric constant of LaAlO3 was estimated to be 20~25. On these substrates, SBT films (210nm) were deposited by sol-gel method and they were characterized by XRD analysis after annealing under various conditions. It was found from C-V characteristics that the memory window of an SBT film annealed at 750°C for 30min in O2 atmosphere was about 3.0V for the voltage sweep of ±10V. It was also found from the retention measurement that the capacitance values of the SBT film annealed at 750°C did not change over 12hours. It is concluded from these results that the SBT/LaAlO3/Si(100) structure is one of the most promising structures for realizing MFISFETs (metal-ferroelectric-insulator-semiconductor field-effect-transistors).  相似文献   

16.
SrBi 2 Ta 2 O 9 thin films were prepared by ECR plasma enhanced metalorganic chemical vapor deposition (ECR-MOCVD) with a liquid-delivery system using one cocktail source without an additional solvent. The strontium-tantalum double alkoxide, Sr{Ta[OC 2 H 4 H(CH 3 ) 2 ](OC 2 H 5 ) 5 } 2 , was dissolved in stabilized trimethyl bismuth, Bi(CH 3 ) 3 / dioxane. This source system has been used in a conventional bubbling system. Deposition rate and the composition of the films were strictly controlled by the concentration and the composition of the cocktail source. Therefore, high reproducibility was realized by using this system. The constituent phase of the stoichiometric SBT film as-deposited at 500 C on a (111)Pt/TiO 2 /SiO 2 /Si substrate was a fluorite phase and transformed to the single phase of SBT by the post annealing at 800 C. It showed almost the same ferroelectricity as the stoichiometric composition film.  相似文献   

17.
Abstract

Ferroelectric SrBi2Ta2O9 thin films were deposited on the Bi2O3 buffered Pt/Ti/SiO2/Si substrates using liquid-delivery metalorganic chemical vapor deposition. SBT films with 5nm thick-Bi2O3 buffer layer on Pt bottom electrode showed stronger (115) orientation than those without Bi2O3 buffer layer after annealing at 750°C. The value of the remanent polarization of SBT films with Bi2O3 buffer layer were improved significantly in comparison with those for the films without Bi2O3 buffer layer. The remanent polarization(2Pr) and coercive field(Ec) of SBT films without and with Bi2O3buffer layer annealed at 750°C were 11.9, 20.8 μ C/cm2 and 57, 37.8kV/cm at an applied voltage of 5 V, respectively.  相似文献   

18.
Sr0.7Bi2.4Ta2O9 (SBT) thin films were studied for the dependence of Aurivillius phase formation kinetics on their film thickness. SBT thin films were fabricated using a sol-gel process and spin coating, and their thickness was varied controlling the number of spin coating. The films were first heated at a low temperature for the complete crystallization of amorphous film to fluorite phase and then further heated at different elevated temperatures for the phase transformation to Aurivillius for 40 min. It was found that the phase transformation kinetics apparently increased with thickness up to ∼390 nm, and then it sharply decreased at higher values. The Aurivillius crystal size decreased and the density of crystals increased with the increase of film thickness up to ∼390 nm, implying increasing number of nuclei due to the reduced energy barrier for nucleation. Above the critical value both the size and density of crystals decreased. It is suggested that up to ∼390 nm the tensile strain energy in the films, which was stored by the shrinkage of thin films during the removal of remaining organic components from sol-gel chemistry, plays a major role for determining the phase transformation kinetics and above the critical value SBT films act as a free bulk material without substrate constraints.  相似文献   

19.
Abstract

SrBi2Ta2O9 (SBT) thin films were deposited on 6-inch Pt/Ti/SiO2/Si substrates by rf magnetron sputtering using a 12-inch ceramic SBT single target. It is found that several sputtering parameters such as argon (Ar) pressure and rf power were very effective to control the Bi content of SBT thin films which is essential for obtaining good ferroelectric properties.  相似文献   

20.
Abstract

The effects of annealing in forming gas (5% hydrogen, 95% nitrogen; FGA) are studied on spin coated SrBi2Ta2O9 (SBT) thin films. SBT films on platinum bottom electrode are characterized with and without platinum top electrode by Scanning Electron Microscopy (SEM), Auger Electron Spectroscopy (AES), High Temperature X-Ray Diffraction (HT-XRD) and Secondary Ion Mass Spectrometry (SIMS).

High Temperature X-Ray Diffraction (HT-XRD) of blanket Ti/Pt/SBT films in forming gas revealed that the bismuth layered perovskite structure of the SBT is stable up to approx. 500°C. SIMS analysis of Pt/SBT/Pt samples annealed in deuterated forming gas (5% D2, 95% N2) showed that the hydrogen accumulates in the SBT layer and at the platinum interfaces next to the SBT. After FGA of blanket SBT films, tall platinum-bismuth whiskers are seen on the SBT surface.

Performing the FGA of the whole Pt/SBT/Pt/Ti stack, two different results are found. For the samples with a high temperature annealing (HTA) step in oxygen after top electrode patterning, top electrode peeling is observed after FGA. For the samples without a HTA step after top electrode patterning, no peeling is observed after FGA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号