首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT

In the ((Na0.5K0.5)1?x)Lix)(Nb0.8Ta0.2)O3 (NKLNT) system, dense ceramics were developed by conventional sintering process. The electrical properties of NKLNT ceramics were investigated as a function of Li substitution. When the sample sintered at 1100°C for 4 h with the substitution of 2 mol% Li at the morphotropic phase boundary, electro-mechanical coupling factor (kP) and piezoelectric coefficient (d33) were found to reach the highest values of 0.42 and 210 pC/N, respectively. These excellent piezoelectric and electromechanical properties indicate that this system is potentially good candidate for lead-free material for a wide range of electro-mechanical transducer applications.  相似文献   

2.
Na0.5K0.5NbO3 (NKN) and Pb(Zr0.53Ti0.47)O3 (PZT) films have been grown by rf-magnetron sputtering and pulsed laser deposition techniques, correspondingly, on sapphire (Al2O3-0112, r-cut), quartz (Y+36°-cut) and YAlO3 + 1% Nd (Nd:YAlO3-001) single crystal substrates with Interdigital Capacitor (IDC) of Coplanar Waveguide (CPW) structure. Photolithography and metal lift-off technique was used for processing of the tunable microwave capacitor. Microwave network analyzer with G-S-G Picoprobe and probe station performed microwave measurement with external DC bias. NKN film interdigital capacitors on Nd:YAlO3 show superior performance in the microwave range from 1 to 40 GHz. Within this range, the voltage tunability (40 V, 200 kV/cm) was about 29%, loss tangent ~ 0.13, K-factor from 152% @10 GHz to 46% @40 GHz, voltage independent C p was about 230 fF, tan δ p changes from 0.14 @10 GHz to 0.36 @40 GHz, real and imaginary part of interconnect impedance increases with frequency from 0.13 Ω @10 GHz to 0.50 Ω @40 GHz and from 1.9 Ω @10 GHz to 5.9 Ω @40 GHz respectively.  相似文献   

3.
ABSTRACT

Magnetoelectric composites were synthesized from piezoelectric BaTiO3 and ferrimagnetic NiFe2O4. These two phases are mixed, mechanically milled and heat treated. A characterization is made by means of electronic microscopy and x-ray diffraction. The results of the magnetic, electric, ferroelectric and piezoelectrical response of two different compositions are obtained. The composites are superparamagnetic in all the measured temperature range. It was observe a magnetic change induced by a structural transition of the ferroelectric phase. The composites behaves as an acceptable mechanical resonator when the content of the ferroelectric phase is equal or greater than 60 wt.%.  相似文献   

4.
ABSTRACT

Lithium-doped K0.5Na0.5NbO3 (KLNN) films were fabricated by chemical solution deposition on Pt/TiO2/SiO2/Si substrates. Homogeneous and stable precursor solutions were prepared by controlling the reaction of starting metal alkoxides. Perovskite KLNN single-phase thin films were successfully synthesized on Pt/TiO x /SiO2/Si substrates. The 0.75-μ m-thick KLNN film annealed at 650°C exhibited ferroelectric polarization hysteresis loops at ?250°C. The loop at room temperature was round, indicating the film contained leakage components. The dielectric constant under zero bias was 490 at room temperature. A typical upside-down butterfly DC bias-capacitance curve was obtained in the KLNN film capacitors at room temperature, indicating that polarization reversal occurred in the obtained KLNN films.  相似文献   

5.
Abstract

Highly c-axis oriented single phase Na0.5K0.5NbO3 (NKN) thin films have been deposited onto polycrystalline Pt80lr20 substrates and SiO2/Si(001) wafers using pulsed laser ablation of stoichiometric ceramic target. Strong self-assembling of NKN films along the [001] direction has been observed. Properties of NKN/Pt thin film structures have been successfully tailored by oxygen pressure control from the ferroelectric state, characterized by the remnant polarization of 12 uC/cm2, dielectric constant ? ~ 520 and tan δ ~ 0.024 @ 100 kHz, to superparaelectric state with tan δ as low as 0.003 and ? = 210 with very small 1.7% dispersion in the frequency domain 0.4–100 kHz and less than 10% variation in the temperature range 77–415 K. NKN films grown onto SiO2/Si(001) substrates show quadrupled super-lattice structure along c-axis, loss tan δ less than 0.01, and ? ~ 110 @ 1 MHz. C-V measurements for Au/NKN (270nm)/SiO2/Si MFIS-diode structure yield memory window of 3.26 V at the programmable voltage of 8 V.  相似文献   

6.
Dielectric spectroscopy was applied to porous nanocrystalline Na0.5K0.5NbO3 (NKN) ceramic green body, wherein influences of percolation effect and water adsorption at pore surface of the ceramic green body on dielectric response were examined over wide temperature (150 to 450?K) and frequency (100?Hz to 1?MHz) ranges. Dielectric permittivity of the ceramic green body is about 2–3 orders of magnitude higher than that of pure NKN powder or NKN ceramic. Furthermore, the high dielectric permittivity and high humidity sensitivity of the ceramic green body can appear again with aging a period of time in air. The data from this investigation make potential applications for NKN as a giant dielectric material or a humidity sensing material.  相似文献   

7.
Na0.5?K0.5NbO3 (KNN) ceramics were sintered at different temperatures (970 °C, 1000 °C, 1030 °C, 1060 °C, and 1090 °C) for 3 h by a pressureless sintering method. The powders had been synthesised by sol–gel method, using citric acid as a coordination agent and ethylene glycol as an esterifying agent. The effects of temperature on the phase, microstructure, dielectric, ferroelectric, and piezoelectric properties of the as-prepared ceramics were analysed. The results revealed that all of the ceramics had a pure perovskite phase with orthorhombic symmetry. The piezoelectric constant (d 33), the relative dielectric constant (ε r), the planar electromechanical coupling coefficient (K p), and the remnant polarization (P r) initially increased and then decreased with increasing of temperature in such KNN ceramics. The volatilization of sodium and potassium increased with increasing sintering temperature. Over the range of temperatures studied, those ceramics sintered at 1060 °C had the following optimal properties: (ρ?=?3.97 g/cm3, d 33?=?119 pC/N, ε r?=?362.46, tan δ?=?0.05, K p?=?0.23, P r?=?11.97 μC/cm2, E c?=?10.35 kV/cm, and T c?=?408 °C).  相似文献   

8.
Pb(Yb1/2Nb1/2)O3-PbTiO3 ceramics at the morphotropic phase boundary (50:50) were sintered by conventional and reactive methods to 95% theoretical density and grain sizes <10 m. Excess PbO, added to enhance the densification, resulted in PbO-based non-ferroelectric phases that degraded the electrical properties. Volatilization of excess PbO by annealing the samples after sintering resulted in dense, perovskite samples and excellent electrical properties. The best electrical properties, obtained via reactive sintering, were a remanent polarization, P r, of 0.36 C/m2, a maximum dielectric constant of 31,000 (at the T c = 371°C and 1 kHz), a piezoelectric charge coefficient, d 33, of 508 pC/N, and an electromechanical coupling coefficient, k 33, of 0.61.  相似文献   

9.
Abstract

Perfect c-axis oriented Na0.5K0.5NbO3 (NKN) films have been pulsed laser deposited on Al2O3(0112) single crystals (r-cut sapphire) for voltage tunable microwave device applications. Thickness dependence of dielectric performance of the NKN/sapphire interdigital capacitors (IDCs) has been studied. 40 V bias tunability and dielectric loss tan δ of 4 μm slot IDCs have been found to be 24.6 % and 2.86 % for 1.2 μm thick NKN film, and 6.1 % and 0.83 % for 0.14 μm thick NKN film, respectively. Low leakage currents and high breakdown voltages are observed in these structures.  相似文献   

10.
《Integrated ferroelectrics》2013,141(1):769-779
Ferroelectric Na0.5K0.5NbO3 (NKN) thin films were grown on the Pt80Ir20 polycrystalline substrates by pulsed laser deposition (PLD) and radio frequency-magnetron sputtering (RF) technique using the same stoichiometric Na0.5K0.5NbO3 ceramic target. X-ray diffraction proved both PLD- and RF-made Na0.5K0.5NbO3/Pt80Ir20 films are single phase and have preferential c-axis orientation. Temperature dependence of dielectric permittivity reveals the presence of two phase transitions around 210 and 410°C. Capacitance vs. applied voltage C-V @ 100 kHz, I-V, and P-E hysteresis characteristics recorded for the vertical capacitive structures yielded loss tanδ = 0.026 and 0.016, tunability about 44.5 and 30% @ 100 kV/cm, Ohmic resistivity 6.7 × 1012 Ω·cm and 0.2 × 1012 Ω·cm, remnant polarization 11.7 and 9.7 μC/cm2, coercive field 28.0 and 94.6 kV/cm for PLD- and RF-films, respectively. Piezoelectric test carried out in hydrostatic conditions showed piezoelectric coefficient d H = 21 for PLD-NKN and 15 pC/N for RF-NKN film.  相似文献   

11.
《Integrated ferroelectrics》2013,141(1):631-640
Highly crystalline Na0.5K0.5NbO3 (NKN) thin films of 1–2 μm thickness were deposited by rf-magnetron sputtering of a stoichiometric, ceramic target on single crystal LaAlO3(001) and Al2O3(0112) substrates. X-ray diffraction measurements revealed epitaxial quality of NKN/LaAlO3 film structures, whereas NKN films on sapphire substrates were found to be preferentially c-axis oriented. A prism-coupling technique was used to characterize optical and waveguiding properties. A bright-line spectrum at λ = 632.8 nm, revealed sharp peaks, corresponding to transverse magnetic (TM) and electric (TE) waveguide propagation modes in NKN/LaAlO3 and NKN/Al2O3 thin films. Using a least mean square fit the refractive index for the films and film thickness were calculated. The extraordinary and ordinary refractive indices were determined to n e = 2.207 ± 0.002 and n o = 2.261 ± 0.002, and n e = 2.216 ± 0.002 and n o = 2.247 ± 0.002 at λ = 632.8 nm for 2.0 μm thick NKN films on LaAlO3 and Al2O3, respectively. This corresponds to a birefringence Δn = n e ? n o = ?0.054 ± 0.003 and Δn = ?0.031 ± 0.003 in the films, where the larger Δn for the NKN/LaAlO3 structure can be explained by the superior crystalline quality compared to NKN/Al2O3. Atomic force microscopy images of the film surfaces revealed rms roughnesses of 2.5 nm and 8.0 nm for 1.0-μm thick NKN/LaAlO3 and NKN/Al2O3 films, respectively. We believe surface scattering is one of the main sources of waveguide losses in the thin films.  相似文献   

12.
13.
Barium Strontium Titanate (BST) ferroelectric thick films have been investigated as potential candidates for use in frequency agile microwave circuit devices. Powder processing techniques such as screen-printing have been used to make BST thick films. However, due to the interactions between the BST and substrates such as alumina, the sintering temperatures for the BST thick films are limited and the resultant films are difficult to achieve full densification. In this paper, the effects of different powder processing conditions (calcination, sintering temperature and time) on the sintering behaviour and dielectric properties of the BST ceramics have been investigated. The dielectric behaviour of the ceramics has been correlated with composition and microstructural features such as chemical homogeneity, grain size and domain wall movements.  相似文献   

14.
Abstract

The leakage current and dielectric properties of (Ba0.5Sr0.5)TiO3(BST) thin films prepared by pulsed laser deposition (PLD) were investigated. It was found that leakage currents for positive bias voltage were higher than that for negative bias voltage, which was attributed to the lattice mismatch between bottom Pt electrode and BST thin film. The time-dependent breakdown process under positive voltage was observed, which was interpreted as the increase of the internal electric field in the film near the bottom electrode. However, the internal electric field can be decreased and eventually recovered by applying negative bias voltage. It was found that internal electric field near the interface can influence the capacitance of the BST thin film capacitor. An explanation for the thickness effect of BST thin films was given.  相似文献   

15.
In order to clarify the influence of excess ions in A or B sites on perovskite (K,Na)NbO3 ceramics, various compositions of (K0.48Na0.52)Nb1+x%O3 (ABO3) ceramics where x is in the range of ±1 % were prepared by conventional solid state method and their densification, structure, dielectric and piezoelectric properties were investigated. Results showed that a small amount of excess A-site ions could compensate for the deficiency of K and Na ions in A-sites caused by volatilization resulting in good piezoelectric properties. The ceramics with x?=??0.1 exhibited optimum piezoelectric properties with d 33?=?127pC/N and k p?=?0.41. However, presence of too much alkali elements (x?<??0.5) led to deterioration of density, dielectric and piezoelectric properties, although the crystal structure was not changed. The electrical properties, on the other hand, were not sensitive to the B-site excess ions. These results are expected to be very useful for further designing of (K,Na)NbO3-based ceramics as lead-free alternatives to piezoelectric materials.  相似文献   

16.
Lead free 0.95[(K0.5Na0.5)1-x Ag x NbO3]-0.05LiSbO3 (KNAN-LS) ceramics with x?=?0.02, 0.04, 0.06 and 0.08 have been synthesized by conventional solid state reaction route (CSSR). XRD analysis confirmed the presence of a mixed structure for x?=?0.06. The orthorhombic?Ctetragonal polymorphic phase transition (PPT) temperature and the Curie temperature (Tc) decreased with the increase in Ag+ ion content in KNAN-LS ceramics. The relationship between the PPT of the ceramics and the temperature dependence of electrical properties of KNAN-LS ceramics were discussed in detail. The KNAN-LS ceramics with x?=?0.06 showed better piezoelectric and electromechanical properties (d33?=?227pC/N and kp?=?42.5?%).  相似文献   

17.
Lead-free K0.5Na0.5NbO3 (KNN) thin films were prepared on Pt (111) /Ti/SiO2/Si (100) substrates by a polyvinylpyrrolidone (PVP)-modified sol-gel method without any metal alkoxides. The effects of PVP on the crystallization, surface morphology and electrical properties were investigated. It was found that the introduction of PVP into the sol could reduce the annealing temperature, enhance the surface quality and improve the KNN film of (100) oriented growth. Compared with the pure non-PVP-modified KNN thin films, the dielectric and ferroelectric properties of the KNN films were significantly enhanced by adding PVP into the sol. In particular, the PVP-modified KNN films which were annealed at 550°C exhibited relatively saturated polarization-electric field (P-E) hysteresis loops with high remnant polarization Pr of 22 μC/cm2, dielectric constant of 280 and dielectric loss of 0.09, respectively, indicating promising lead-free piezoelectric film candidate for future applications.  相似文献   

18.
Niobate ceramics such as NaNbO3 and KNbO3 have been studied as promising Pb-free piezoelectric ceramics, but their sintering densification is fairly difficult. In the present study, highly dense Na0.5K0.5NbO3 ceramics with submicron grains were prepared using SPS, whose density was raised to 4.47 g/cm3 (>99% of the theoretical density) at 920 °C. Reasonably good ferroelectric and piezoelectric properties were obtained in the SPSed Na0.5K0.5NbO3 ceramics after annealing in air. The effect of annealing time on the electrical properties was investigated to determine optimal processing condition. The piezoelectric parameter (d 33) of the Na0.5K0.5NbO3 ceramics annealed properly reached 148 pC/N.  相似文献   

19.
Topochemical microcrystal conversion (TMC) method is a powerful tool to synthesize platelike microcrystal particles with a regular-perovskite crystal structure, which is difficult to be fabricated by conventional flux techniques. By using the TMC method, polycrystalline rectangular-platelike NaNbO3 particles with a orthorhombic perovskite structure were able to be synthesized from platelike precursor particles of layer-structured K4Nb6O17 at 1000°C in molten NaCl-salt. The TMC-synthesized NaNbO3 particles preserved the shape of precursor particles, and had a thickness of about 1 micron and a width of 5-10 microns. However TMC-synthesized platelike NaNbO3 particles had a polycrystalline morphology having a preferred pseudo-cubic {100} orientation. Oriented particulate layer X-ray diffraction (OPL-XRD) analysis revealed that, during the TMC reaction, the crystallographic {010} plane of K4Nb6O17 is converted to the most of {001} plane of polycrystalline NaNbO3 particles in spite of polycrystalline morphology. Using the polycrystalline platelike NaNbO3 particles as a template in the reactive templated grain growth method (RTGG), {001} grain-oriented (K0.5Na0.5)NbO3—1 mol% CuO ceramics having a {001} orientation degree (Logering’s factor) of 45% could be fabricated. The result indicates that not only single crystalline particles, which were generally used, but also the polycrystalline particles can be act as template in the RTGG process. The availability of polycrystalline particles will give a new design of synthesizing templates for texturing of various kinds of perovskite crystal-structured ceramics.  相似文献   

20.
A NaF-Nb2O5 flux doped (Na,K)NbO3 (NKN) based lead-free ceramic was successfully co-fired with nickel inner electrodes in reduced atmospheres. No chemical reactions and/or inter-diffusion were detected at the interface between the nickel (Ni) electrodes and the NKN-based piezoelectrics. Dielectric, resistivity, and electromechanical performance were measured with processing under different firing conditions and flux additions to obtain high densities. Ceramics are obtained with submicron grain structures with the NaF-Nb2O5 sintering aids (2 and 4 wt%) fluxes, and high densities when firing at low pO2 (10?10 atms) atmospheres at sintering temperatures ~1150 °C for 2 hours. High resistivities and low losses can be obtained through a second annealing condition at 850 °C and 10?7 atms at 8 hours. High d 33 values (over 350 pm/V) determined under unipolar converse electromechanical measurements were obtained in the simple prototyped co-fired structures to show feasibility towards base metal electrodes in multilayer actuators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号