首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
阐述了微波铁氧体器件发展现状,指出了微波铁氧体器件当前应该发展的技术方向和亟需突破的关键技术,强调微波铁氧体器件小型化和便于IC集成要求迫在眉睫。为实现微波铁氧体器件的小型化,从微波铁氧体器件基本原理入手,论述了圆极化概念在微波铁氧体器件功能实现和性能优化方面的重要作用,提出了采用绝缘多导体磁性结构实现可满足小型化和便于集成化要求的新一代微波铁氧体器件的基本思路。绝缘多导体磁性器件结构可实现多个TEM波模式的混合传输,利用此构造关于磁化偏置方向的正负圆极化波,从而产生显著的非互易传输和电控特性。TEM模式没有低频截止问题,器件尺寸可大体不受波长比拟规则的限制,通过目前日趋成熟的磁性集成化工艺,可实现小型化和便于IC集成化的新一代微波铁氧体器件。  相似文献   

2.
Abstract

We report measurements of gold circuits fabricated on four BaxSr1-xTiO3 ferroelectric films doped with 1% Mn grown on MgO substrates by laser ablation. Low frequency (1 MHz) measurements of σT and tanδ on interdigital capacitors are compared with high frequency measurements of phase shift and insertion loss on coupled microstrip phase shifters patterned onto the same films. The variation in temperature of both high and low frequency device parameters is compared. Annealed with amorphous buffer layer and unannealed films are compared. Room temperature figures of merit of phase shift per insertion loss of up to 58.4°/dB at 18 GHz and 400 V dc bias were measured.  相似文献   

3.
Abstract

High permittivity (BaxSr1?x)Ti1+yO3+z(BST) thin films are being investigated for integration into charge storage dielectrics and electric-field tunable elements for high frequency devices. For the latter application, it is desirable to have BST capacitors with high tunability and low losses. Therefore, we investigated the use of multilayer BST thin films consisting of very low dielectric loss BST/electrode interfacial layers ((Ba+Sr)/Ti = 0.73) sandwiching a high tunability, high permittivity primary BST layer ((Ba+Sr)/Ti = 0.9). BST capacitors with multiple layers of controlled composition can be effectively produced insitu by magnetron sputter deposition, using a single stoichiometric target and controlling the layer composition by changing the total process gas (Ar+O<2) pressure. The layered BST film capacitors exhibit simultaneous low loss (tan Δ = 0.005), high tunability (76%), high charge storage energy density (34 J/cm3), low leakage, and high dielectric breakdown (>2.8 MV/cm).  相似文献   

4.
综述了目前钛酸锶钡(BST)铁电薄膜最为常用的4种制备工艺:磁控溅射法(Magnetron Sputtering)、脉冲激光沉积法(PLD)、溶胶-凝胶法(Sol-gel)、金属有机物化学气相沉积法(MOCVD)。并介绍了在优化BST铁电薄膜性能方面所作的工作和取得的成果。  相似文献   

5.
Abstract

Ferroelectric barium titanate and multiferroelectric bismuth ferrite thin films have been fabricated by using sol-gel processing technique. The starting materials for fabrication of were barium 2-ethyl hexanoate and titanium (IV) isoproposxide. Bismuth nitrate and ferric nitrate were the precursors for the fabrication of thin films. The as-deposited films were annealed at higher temperature for crystallization. The X-ray diffraction study on the films showed that the as-grown films were found to be amorphous that crystalized to proper phases by annealing at 550?°C in air for one hour. All the samples showed high optical transparencies in the visible frequency range. The room temperature dielectric constant and loss tangent of barium titanate thin films at 1?kHz frequency were found to be 400 and 0.01 respectively. Both the dielectric constant and loss tangent showed small dispersion in the frequency range of 0.10–1000?kHz range. The ferroelectricity in barium titanate thin films was confirmed by the presence of bell shaped capacitance-voltage (C-V) butterfly loop and saturated polarization-field (P-E) hysteresis loop. The as-grown bismuth ferrite thin films were also found to be amorphous that crystallizes after annealing at 500?°C. These films also showed high optical transparencies in the visible region. The bismuth ferrite thin film samples showed saturated hysteresis loop and magnetic polarization-magnetic field hysteresis loop as well, confirming the multiferroic nature of the samples.  相似文献   

6.
采用有机金属裂解法在Pt/TiO2/SiO2/Si基板上制备M型钡铁氧体(Ba M)薄膜,并着重研究了螯合剂乙二胺四乙酸(EDTA)含量对Ba M薄膜结构、磁性和微波性能的影响。研究发现,当EDTA∶(Ba2++Fe3+)=1(摩尔比)时,Ba M薄膜形成较多的六角形状晶粒,而且磁性能和微波性能较佳,沿c轴生长的取向度高达0.91,饱和磁化强度Ms为302k A/m(μ0Ms=0.38T),在50GHz时铁磁共振线宽ΔH为22k A/m(277Oe)。这是因为适量的EDTA不仅在溶液挥发时能够阻止金属离子的分离和间歇性的沉淀,并且能够促进成形成均匀的前驱液,从而在前驱液分解时能促进形成Ba M,在经过热处理后易形成沿c轴取向、具有六角形状晶粒的Ba M薄膜。  相似文献   

7.
Abstract

At crystallization temperatures of about 800°C bismuth layered oxide SrBi2Ta2O9 (SBT) deposited by MOD develops good ferroelectric properties for use in FeRAM devices. But scaling down the film thickness of SBT below 150 nm only shorts are measured at this crystallization temperture after top electrode deposition. Working Pt/SBT/Pt-capacitors are achieved by reducing the crystallization temperature. Also temperatures of 800°C are too high for integration of the SBT module in a stacked capacitor architecture for high density memory devices. Therefore, a process is needed to reduced the crystllization temperature of SBT, called ”Low Temperature Process“.

In this work the electric properties of spin-on processed SBT crystallized in a temperature window from 650°C up to 800°C are investigated. As shown by XRD, transtion of the nonferroelectric Fluorite phase to the Aurivillius phase takes place at approximately 625°C. Increasing the cystallization temperature gives better crystaallized SBT films with bigger SBT graains. However, film prosity is also increasing with temperature. Electrical results of stoichiometric variations of SBT are presented. SEM pictures show that cluster formation is correlated with less film porosity at lower temperatures.  相似文献   

8.
Abstract

Organometallic chemical vapour deposition is a suitable technique for the deposition of thin films of oxidic compounds such as lead zirconate titanate, PbZrxTi1?xO3. Above a deposition temperature of about 600°C stoichiometric PbZrxTi1?xO3 films can be grown on platinized silicon wafers within a large process window, independent of the precursor partial pressures and the deposition temperature. This is the result of a self-regulating mechanism. The PbZrxTi1?xO3 films have excellent ferroelectric properties exhibiting high values, up to 60μC/cm2, for the remanent polarisation. The value of the coercive field strength varies between 50 and 180 kV/cm, dependent on the composition. Layers with comparable properties can also be grown at lower temperatures, down to 500°C. In this case careful control of the gas-phase composition is required to obtain films with the correct stoichiometry.  相似文献   

9.
Abstract

Ferroelectric SrBi2Ta2O9 thin films were deposited on the Bi2O3 buffered Pt/Ti/SiO2/Si substrates using liquid-delivery metalorganic chemical vapor deposition. SBT films with 5nm thick-Bi2O3 buffer layer on Pt bottom electrode showed stronger (115) orientation than those without Bi2O3 buffer layer after annealing at 750°C. The value of the remanent polarization of SBT films with Bi2O3 buffer layer were improved significantly in comparison with those for the films without Bi2O3 buffer layer. The remanent polarization(2Pr) and coercive field(Ec) of SBT films without and with Bi2O3buffer layer annealed at 750°C were 11.9, 20.8 μ C/cm2 and 57, 37.8kV/cm at an applied voltage of 5 V, respectively.  相似文献   

10.
Abstract

Dielectric properties and tunability of Ba0.60Sr0.40TiO3 (BST) and BaZr0.25Ti0.75O3 (BZT) thick films and bulk ceramics have been investigated as a function of temperature (90 K - 320 K) in the kHz region. Thick films show compared to bulk ceramics low permittivity and a very broad ferroelectric phase transition which leads to low temperature dependence of tunability. Tunability of 30% can be achieved with an external field of 2 kV/mm. Measurements in the microwave region adumbrate that the dielectric losses of BZT are about three times higher than that of BST thick films.  相似文献   

11.
ZnO films were grown on Al2O3 (1000) substrates without and with ZnO buffer layers by using radio-frequency magnetron sputtering. Atomic force microscopy images showed that the surface roughness of the ZnO films grown on ZnO buffer layers annealed in a vacuum was decreased, indicative of an improvement in the ZnO surfaces. X-ray diffraction patterns showed that the crystallinity of the ZnO thin films was enhanced by using the annealed ZnO buffer layer in comparison with the film grown on without a buffer layer. The improvement of the surface and structural properties of the ZnO films might be attributed to the formation of the Zn-face ZnO buffers due to annealing in a vacuum. These results indicate that the surface and structural properties of ZnO films grown on Al2O3 substrates are improved by using ZnO buffer layers annealed in a vacuum.  相似文献   

12.
Abstract

Recently, there has been significant interest in use of (Ba,Sr)TiO3 (BST) thin films for tunable high frequency (RF and microwave) components. In a previous work we have shown that BST thin films grown by metalorganic chemical vapor deposition (MOCVD) exhibit films very low losses (as low as 0.003–0.004) and tunabilities over 50% at low operation voltages.

In order to integrate BST thin films in tunable devices, the objectives of this work are : (i) study the effect of bottom and top electrode on the performance of thin film based capacitors, (ii) correlate low frequency (10 kHz) and high frequency (45 MHz - 1 GHz) measurements, (iii) separate the contribution of dielectric losses and metallic losses at both low and high frequency and finally (iv) show the potential usefulness of series capacitors structures.  相似文献   

13.
Abstract

In this work, metal / ferroelectric / insulator / semiconductor (MFIS) and metal / ferroelectric / metal / insulator / semiconductor (MFMIS) structures using Pb(Zr, Ti)O3 (PZT) films were fabricated and characterized for nonvolatile NDRO memory device. 300nm-thick PZT films were deposited by reactive RF magnetron sputtering method on ZrTiO4(ZT)/Si and Pt/ZT/Si substrates. C-V hysteresis were measured in both MFIS and MFMIS structures. By using a small-size MFM capacitor on a large-size MIS structure, it was found that the memory window of MFMIS structure was larger than that of the MFIS structure. There is a critical area ratio (SMIS/SMFM) in MFMIS structure. When an area ratio in MFMIS structure is below 12, the memory window increased with increasing area ratio. We could obtain that the memory window of MFMIS structure with a SMIS/SMFM of 11.8 was 2.1 V and 3.2 V with an applied voltage at 3 V and 5 V.  相似文献   

14.
Abstract

Bismuth-layer-structured ferroelectric thin films, SrBi2Ta2O9 and Bi4Ti3O12, have been prepared by laser ablation method on both Pt sheets and Si wafers at low temperatures of 400 ~ 500°C. These thin films have been characterized by XRD, XPS, AFM, C-V, D-E hysteresis and J-V measurement. SrBi2Ta2O9 thin films have a good (105) preferential orientation, and Bi4Ti3O12 thin films have (117) and c-axis orientation on these substrates. Ferroelectric film-SiO2-Si structures show good C-V hysteresis curve owing to Si surface potential controlled by the D-E hysteresis. D-E hysteresis is obtained in Bi4Ti3O12 thin film prepared on Pt sheet, and the remnant polarization and the coercive force are 7.5 μC/cm2 and 72 kV/cm, respectively.  相似文献   

15.
Films of (1−x)Pb(Zn1/3Nb2/3)O3-xPb(Zr0.4Ti0.6) O3 (x = 0.6, 40PZN-60PZT) were deposited on Pt/TiO2/ SiO2/Si substrate through spin coating. Using a combination of homogeneous precursor solution preparation and two-step pyrolysis process, we were able to obtain the 40PZN-60PZT thin films of perovskite phase virtually without pyrochlore phase precipitation after annealing above 650C. But since annealing done at the high temperatures for extended time can cause diffusion of Pt, TiO2 and Si, and precipitation of nonstoichiometric PbO, we adopted 2-step annealing method to circumvent these problems. The 2-step annealed films show dense microstructure than the 1-step films annealed at higher temperature. Furthermore, the root-mean-square surface roughness of 220 nm thick films which are annealed at 720C for 1 min and then annealed at 650C for 5 min was found to be 3.9 nm by atomic force microscopy as compared to the 12 nm surface roughness of the film annealed only at 720C for 5 min. The electrical properties of 2-step annealed films are virtually same and those of the 1-step annealed films annealed at high temperature. The film 2-step annealed at 720C for brief 1 min and with subsequent annealing at 650C for 5 min showed a saturated hysteresis loop at an applied voltage of 5 V with remanent polarization (P r) and coercive voltage (V c) of 25.3 μC/cm2 and 0.66 V respectively. The leakage current density was lower than 10−5A/cm2 at an applied voltage of 5 V.  相似文献   

16.
Abstract

Nanocrystalline thin films of different relaxor materials, namely Pb(Sc0.5Ta0.5)O3 (PST), Pb(Sc0.5Nb0.5)O3(PSN), Pb(Mg1/3Nb2/3)O3(PMN) have been produced by RF-sputtering to investigate whether it will affect their dielectric properties if their grain size is reduced to the dimensions known from their nanodomains. The XRD shows that the amorphous film crystallizes in pyrochlore structure at lower temperatures and short times. Annealing at higher temperatures and far longer time intervals leads to an increasing amount of perovskite phase with a grain size in the nanometer range. These results including dielectric measurements will be presented and discussed.  相似文献   

17.
MEMS structures for micro gas sensors had advantage for lower power consumption, reducing size, and easily making cavity structures. Also, co-planar type MEMS structures (CPMS) for gas sensors with low power consumption heater and dispensed sensing materials were newly proposed and investigated. CPMS, which were formed with micro heater and sensing electrodes at the same layer, to reduce process steps, diffusions between upper layer and lower layer, and thermal differences between the center and the periphery of the sensing layer compared with stacked structure. Dispensing method guided by back-side etched well was good for forming sensing material on sensing electrode and had advantage that various sensing materials could be applied for array type sensors. CPMS were fabricated on four-inch diameter and double side polished (100) silicon wafers and using anisotropic bulk silicon micromachining for membrane formation and etched well. A size of chips with 1.15 mm × 1.15 mm membrane was 4.8 mm × 4.8 mm. And co-planar type sensing electrodes were located in the middle of low stress SiO2/Si3N4 (400 nm /1 μm) membranes. Membranes are thermally isolated from the chip frame because they have low thermal conductivity, generally. Temperatures were measured using IR thermometer with linearly increasing applied power. Power consumption at 400C was 150 mW. Membranes of CPMS were withstood up to 730C at the power of 350 mW. Characteristics of micro heaters for various heater widths of 50 μm, 75 μm, 100 μm and ratios of membrane dimension to heater dimension were measured. Sensing materials guided by micromachined well were dispensed on sensing electrodes. CPMS were mounted on a TO-8 package. From these results, fabricated and characterized CPMS could be used for applications in portable gas sensors for detection of CO, NOx, CHx, H2S, and so on.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号