首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The electrode structures of Pt/Ru and Ru on polycrystalline silicon (poly-Si) were prepared by metalorganic chemical vapor deposition (MOCVD) for high dielectric constant (Ba, Sr)TiO3(BST) capacitor integration. The electrode structures of Pt/Ru/poly-Si annealed above 700°C for 1h in oxygen atmosphere showed a smooth surface ·microstructure without any second phases on the platinum. The specific contact resistance of Pt/Ru and poly-Si in Pt/Ru/poly-Si structures annealed at 800°C was about 1.5 × 10?5 Ω-cm2. The step coverage of Ru film deposited at 150°C was 76% and those of Pt film deposited at 300°C on Ru (deposited at 150°C) was about 61.3%.  相似文献   

2.
Abstract

The ferroelectric SBT films were deposited on Pt/Ti/SiO2/Si substrates by liquid injection metalorganic chemical vapor deposition (MOCVD) with single-mixture solution of Sr[Ta(OEt)5(dmae)]2 and Bi(C6H5)3. The Sr/Ta and Bi/Ta ratio in SBT films depended on deposition temperature and mol ratio of precursor in the single-mixture solution. At the substrate temperature of 400°C, Sr/Ta and Bi/Ta ratio were close to 0.4 and 1 at precursor mol ratio of 0.5~1.0. As-deposited film was amorphous. However, after annealing at 750°C for 30 min in oxygen atmosphere, the diffraction patterns indicated polycrystalline SBT phase. The remanent polarization (Pr) and coercive field (Ec) of SBT film annealed at 750°C were 4.7 μC/cm2and 115.7 kV/cm at an applied voltage of 5 V, respectively. The SBT films annealed at 750°C showed practically no polarization fatigue up to 1010 switching cycles.  相似文献   

3.
Abstract

We have investigated the structural and electrical characteristics of (BaxSr1?x)Ti1+yO3+z (BST) thin films synthesized at 650°C on Pt/SiO2/Si substrates using a large area, vertical metalorganic chemical vapor deposition (MOCVD) reactor equipped with a liquid delivery system. Films with a Ba/Sr ratio of 70/30 were studied, as determined using X-ray fluorescence spectroscopy (XRF) and Rutherford backscattering spectrometry (RBS). A substantial reduction of the dielectric loss was achieved when annealing the entire capacitor structure in air at 700°C. Dielectric tunability as high as 2.3:1 was measured for BST capacitors with the currently optimized processing conditions.  相似文献   

4.
Abstract

Capacitance-Voltage (C-V) characteristics of Pt/(Ba, Sr)TiO3/Pt MIM capacitor were investigated. Hysteresis observed in the C-V characteristics of BST films was analyzed. The dependence of the C-V characteristics on the sweeping direction of applied voltage indicates that the hysteresis is caused by the interface trap charge between the BST film and the Pt electrode. A new method was proposed to characterize the interface traps from the hysteresis of C-V characteristics of MIM capacitor. The trapped electron density near the lower interface of the BST thin films was constant (~ 3 × 1012cm?2) for all the film thickness ranging from 500 Å to 2000 Å, which suggests that the hysteresis is not caused by the bulk property of the BST film but caused by the interfacial property.  相似文献   

5.
Abstract

Paraelectric [Pb, La]TiO3 (PLT, La = 28 mol%) thin films were prepared by dc magnetron sputtering using a multi-element metal target. In order to crystallize the as-deposited PLT thin films into the cubic perovskite structure, a heat treatment was applied at annealing temperatures ranging between 450 and 750°C. The electrical measurements such as dielectric properties, polarization-electric field (P-E), and current-voltage (I–V) were investigated with the change of annealing temperature. The dielectric constant and dissipation factor of paraelectric PLT film annealed at 750°C were 1216 and 0.018, respectively. The charge storage density was approximately 12.5 μC/cm2. The leakage current density in PLT film annealed at 650°C was around 0.1 μA/cm2 at the electric field of 0.25 MV/cm.  相似文献   

6.
Abstract

RF magnetron sputtered Pb(Zrx, Ti1-x)O3 [PZT] films were prepared on IrO2/SiO2/Si and Pt/IrO2/SiO2/Si substrates using the ceramic PZT target with Pb1.1(Zr0.52Ti0.48)O3 composition. In order to obtain single perovskite phase, PZT film was sputtered at room temperature under Ar plasma and followed by high temperature annealing under oxygen atmosphere. In case of Pt/PZT/IrO2 capacitor, Δ P (=P*-P∧) was decreased with oxygen annealing temperature. However, it was increased in Pt/PZT/Pt/IrO2 capacitor. Leakage current density of Pt/PZT/Pt/IrO2 capacitor, which was used for improving leakage characteristics, was about 10-2A/cm?2 order lower than that of Pt/PZT/IrO2 capacitor. Leakage current density of Pt/PZT/Pt/IrO2 capacitor annealed at 700°C was 6.6x10-6A/cm2. From the fatigue test, Pt/PZT/IrO2 capacitor annealed at 650°C and Pt/PZT/Pt/IrO2 capacitor annealed at 700°C showed 3% and 12% degradation of Δ P after 5×1010 fatigue cycles, respectively.  相似文献   

7.
High-dielectric-constant (Ba, Sr)TiO3 [BST] films were deposited by the liquid source chemical vapor deposition (CVD) method. The system consisted of a single-wafer, low-pressure thermal CVD reactor, a vaporizer for liquid source materials, and a shower-type gas nozzle head, giving stable BST film deposition on a 6-in. diam. substrate with uniform thickness and uniform chemical composition ratio. The source materials employed were Ba(DPM)2, Sr(DPM)2, and TiO(DPM)2 dissolved in tetrahydrofuran (THF), resulting in conformal step coverage of BST films at lowered substrate temperatures, where DPM denotes dipivaloylmethanate. Moreover, the two-step deposition technique was developed to restart protrusions formed on BST film surfaces at low temperatures, where the BST films consisted of a buffer layer and a main layer; the buffer layer was a layer about 60 Å thick of CVD-BST film annealed in N2. Thus, the two-step CVD deposition of BST films on Pt and Ru electrodes achieved an equivalent SiO2 thickness of teq ∼ 0.5 nm, a leakage current of JL ∼ 1.0 × 10−8 A/cm2 (at +1.1 V), and a dielectric loss of tan δ ∼ 0.01 at a total film thickness of 250 Å, along with conformal coverage of 80% for a trench with an aspect ratio of 0.65. Then, for BST films deposited on patterned electrodes 0.24 μm wide, 0.60 μm deep, and 0.15 μm high (each spaced by 0.14 μm), the capacitance was demonstrated to be increased without significant deterioration of the leakage current: the capacitance was increased in comparison with that for films on flat electrodes, by a factor corresponding to the increase in surface area due to sidewalls of storage-node-like pattern features. This capacitance increase reflects the most characteristic advantage of CVD, an excellent step coverage on microscopic pattern features. These electrical properties satisfy the specifications for capacitors for Gb-scale dynamic random access memories (DRAMs), giving a storage capacitance of more than 25 fF/cell for a stacked capacitor having a storage node 0.2 to 0.3 μm high. © 1998 Scripta Technica, Electr Eng Jpn, 125(1): 47–54, 1998  相似文献   

8.
Abstract

Bi–layered ferroelectric SrBi2Ta2O9 (SBT) films were successfully prepared on Pt/Ti/SiO2/Si substrates at 650°C by a modified rf magnetron sputtering technique. The SBT films annealed for 1 h in O2 (760 torr) and again for 30 min in O2 (5 torr) at 650°C show a average grain size of about 49 nm. The SBT films annealed at 65 0°C have a remanent polarization (Pr) of 6.0 μC/cm2 and coercive field (Ec) of 36 kV/cm at an excitation voltage of 5 V. The films showed fatigue–free characteristics up to 4.0 × 1010 switching cycles under 5 V bipolar pulse. The retention characteristics of SBT films looked very promosing up to 1.0 × 105 s.  相似文献   

9.
Ferroelectric SrBi2Ta2O9 – (Bi4Ti3)1-xNbxO12 (SBT-BTN) multilayer thin films with various stacking periodicity have been synthesized on Ir/Ti/SiO2/Si substrates by metal organic chemical vapor deposition technique (MOCVD). Tributylbismuth [Bi(C4H9)3], strontium-bis[tantal(pentane-ethoxy)(2-methoxyethoxide)] [Sr[Ta(OEt)5(OC2H4OMe)]2], titanium bis(isopropoxy)bis(1-methoxy-2-methyl-2-propoxide) [Ti(OiPr)2(mmp)2] and niobium-ethoxide [Nb(OC2H5)5] were selected as precursors. X-ray diffraction patterns show that the multilayer films annealed at 800°C consisted of a fully formed perovskite phase with polycrystalline structure. The remanent polarization (2·Pr) and coercive field strength (Ec) were 16.2 μC/cm2 and 230 kV/cm, respectively, values which are much higher compared to pure SBT film (2·Pr = 6.4 μC/cm2, Ec = 154 kV/cm).  相似文献   

10.
ABSTRACT

The integrated single element infrared detectors were developed for high-loading smart munition application using (Ba0.65Sr0.35)TiO3 (BST) pyroelectric films and SiO2 thermal insulating layer. (Ba,Sr)RuO3 (BSR) seeding-layer was deposited on the Pt/Ti/SiO2/Si to induce BST films c-axis preferred orientation growth. The capacitance dependant with temperature of BST films were measured at the temperature ranging from 230 K to 340 K, releasing that the temperature coefficient of capacitance was 1.6%/K. The pyroelectric coefficient of BST films was 7.45 × 10? 7 C/K cm2 measured by dynamic method. Infrared response evaluation of the fabricated sensor has been carried out with D* of 6.34 × 107 cm Hz1/2/W indicating that the integrated infrared detectors have potential application as gun-launched smart munition seeker.  相似文献   

11.
Abstract

SrBi2(Ta0.7Nb0.3)2O9 (SBTN) films were first prepared on (111)Pt/Ti/SiO2/Si substrates by MOCVD from only two organometallic source bottles. Bi(CH3)3 and the mixture of Sr[Ta(O°C2H5)6]2 and Sr[Nb(O°C2H5)6]2 were used as source materials. High compositional reproducibility was obtained; the Nb/(Ta+Nb) ratio was the same as the mixing ratio of the source. Sr/(Ta+Nb) and Bi/(Ta+Nb) ratios can be controlled by the reactor pressure and the input gas flow rate ratio of the source gases. Almost single phase of SBTN was obtained for the film deposited at 500°C and the following heat-treated at 800°C in O2 atmosphere. Pr and Ec values of 330 nm-thick SBTN film were 8.5 μC/cm2 and 91 kV/cm, respectively and were larger than those of SrBi2Ta2O9 film. There was no degradation after 5x1010 cycles polarization switching.  相似文献   

12.
We have fabricated various amount of Li2CO3 doped (Ba,Sr)TiO3 (BST) ceramics for LTCCs (Low Temperature Co-fired Ceramics) applications through the conventional sintering method. By introducing Li2CO3 into BST ceramics, the sintering temperature was decreased from 1350°C to 900°C. In this study, we discussed the crystalline and structural properties of Li2CO3 doped BST ceramics. By scanning X-ray diffraction analysis, we found that 1, 3, and 5 wt% Li2CO3 doped (Ba,Sr)TiO3 ceramics have perovskite structure without any pyrochlore phases. Frequency dependent dielectric properties were analyzed and discussed. Scanning Electron Microscopy (SEM) images depending on the sintering temperature and dopants were prepared and discussed. The crystalline and dielectric properties of Li2CO3 doped (Ba,Sr)TiO3 were discussed.  相似文献   

13.
Films of (1−x)Pb(Zn1/3Nb2/3)O3-xPb(Zr0.4Ti0.6) O3 (x = 0.6, 40PZN-60PZT) were deposited on Pt/TiO2/ SiO2/Si substrate through spin coating. Using a combination of homogeneous precursor solution preparation and two-step pyrolysis process, we were able to obtain the 40PZN-60PZT thin films of perovskite phase virtually without pyrochlore phase precipitation after annealing above 650C. But since annealing done at the high temperatures for extended time can cause diffusion of Pt, TiO2 and Si, and precipitation of nonstoichiometric PbO, we adopted 2-step annealing method to circumvent these problems. The 2-step annealed films show dense microstructure than the 1-step films annealed at higher temperature. Furthermore, the root-mean-square surface roughness of 220 nm thick films which are annealed at 720C for 1 min and then annealed at 650C for 5 min was found to be 3.9 nm by atomic force microscopy as compared to the 12 nm surface roughness of the film annealed only at 720C for 5 min. The electrical properties of 2-step annealed films are virtually same and those of the 1-step annealed films annealed at high temperature. The film 2-step annealed at 720C for brief 1 min and with subsequent annealing at 650C for 5 min showed a saturated hysteresis loop at an applied voltage of 5 V with remanent polarization (P r) and coercive voltage (V c) of 25.3 μC/cm2 and 0.66 V respectively. The leakage current density was lower than 10−5A/cm2 at an applied voltage of 5 V.  相似文献   

14.
Abstract

Platinum thin films were deposited by low pressure chemical vapor deposition (LPMOCVD) on SiO2/Si and (Ba, Sr)TiO3/Pt/SiO2/Si substrates using Pt-hexafluoroacetylacetonate at various deposition temperatures. The shiny mirror-like Pt thin films of a high electrical conductivity were obtained, when the deposition temperature is between 325°C and 350°C, whereas above 375°C Pt thin films showed rough surface as well as poor adhesion property to oxide substrate. Pt thin films had a good step coverage of 90%. The results indicate that LPMOCVD Pt thin films can be applied for the top electrode of high dielectric thin film, which is thought to be one of the best candidate materials for a capacitor of ULSI DRAM.  相似文献   

15.
Abstract

The effect of various temperature nitrogen anneals prior to top electrode deposition on the ability of Ba0.7Sr0.3TiO3 (BST) thin-film capacitors with both Ir and Pt top electrodes to withstand hydrogen damage was investigated. Experimental results show that samples that underwent a 750 °C N2 pre-top electrode anneal exhibited the lowest leakage current density at positive bias for both Ir- and Pt-electroded devices after forming gas anneal. It was also found that DRAM polarization values decreased slightly after forming gas anneal. Also, a post-top electrode deposition 550°C O2 anneal improved both electrical characteristics (lowered leakage and increased DRAM polarization) of these devices. Complete recovery of the leakage level prior to hydrogen damage was obtained after a 550°C N2 recovery anneal for some devices independent of the pre-top electrode anneal. Ir- and Pt-electroded BST (40nm) capacitors have been shown to meet the 1 giga-bit DRAM leakage current requirement of 10?8 A/cm2 at 1.7 V. These Ir- and Pt-electroded BST devices achieved capacitance density levels of approximately 50 fF/μm2.  相似文献   

16.
Films of PZT about 0.2 μm thick with the composition PbZr0.53Ti0.47O3 were prepared using the metalloorganic decomposition (MOD) process. The amorphous films produced by pyrolysis at 350°C were annealed at 550, 575, 600 and 650°C for 10 minutes, 1 hour or 4 hours. Films annealed at temperatures below 550°C showed no ferroelectric behavior while others annealed above 650°C showed signs of loss of ferroelectric behavior. Most films demonstrated satisfactory ferroelectric properties such as low switching voltage and high polarization values. Some PZT films also demonstrated fatigue life-time of more than 109 switching reversals. The performance of the films was dependent on the annealing time and temperature. It was found that films with better initial polarization values did not necessarily demonstrate better fatigue behavior. The causes of film degradation as a result of switching based on the pinning of domains at grain boundaries triggered by the migration of pores is discussed.  相似文献   

17.
ABSTRACT

Lithium-doped K0.5Na0.5NbO3 (KLNN) films were fabricated by chemical solution deposition on Pt/TiO2/SiO2/Si substrates. Homogeneous and stable precursor solutions were prepared by controlling the reaction of starting metal alkoxides. Perovskite KLNN single-phase thin films were successfully synthesized on Pt/TiO x /SiO2/Si substrates. The 0.75-μ m-thick KLNN film annealed at 650°C exhibited ferroelectric polarization hysteresis loops at ?250°C. The loop at room temperature was round, indicating the film contained leakage components. The dielectric constant under zero bias was 490 at room temperature. A typical upside-down butterfly DC bias-capacitance curve was obtained in the KLNN film capacitors at room temperature, indicating that polarization reversal occurred in the obtained KLNN films.  相似文献   

18.
Abstract

High permittivity (BaxSr1?x)Ti1+yO3+z(BST) thin films are being investigated for integration into charge storage dielectrics and electric-field tunable elements for high frequency devices. For the latter application, it is desirable to have BST capacitors with high tunability and low losses. Therefore, we investigated the use of multilayer BST thin films consisting of very low dielectric loss BST/electrode interfacial layers ((Ba+Sr)/Ti = 0.73) sandwiching a high tunability, high permittivity primary BST layer ((Ba+Sr)/Ti = 0.9). BST capacitors with multiple layers of controlled composition can be effectively produced insitu by magnetron sputter deposition, using a single stoichiometric target and controlling the layer composition by changing the total process gas (Ar+O<2) pressure. The layered BST film capacitors exhibit simultaneous low loss (tan Δ = 0.005), high tunability (76%), high charge storage energy density (34 J/cm3), low leakage, and high dielectric breakdown (>2.8 MV/cm).  相似文献   

19.
Abstract

Variations of the leakage current behaviors and interface potential barrier height (ΦB) of rf-sputter deposited (Ba, Sr)TiO3 (BST) thin films with thicknesses ranging from 20 nm to 150 nm are investigated as a function of the thickness and bias voltages. The top and bottom electrodes are dc-sputter-deposited Pt films. ΦB critically depends on the BST film deposition temperature, postannealing atmosphere and time after the annealing. The postannealing under N2 atmosphere results in a high interface potential barrier height and low leakage current. Maintaining the BST capacitor in air for a long time reduces the ΦB from about 2.4 eV to 1.6 eV due to the oxidation. ΦB is not so dependent on the film thickness in this experimental range. The leakage conduction mechanism is very dependent on the BST film thickness; the 20 nm thick film shows tunneling current, 30 and 40 nm thick films show Schottky emission current.  相似文献   

20.
Ferroelectric Ba0.5Sr0.5TiO3 (BST) films were prepared on Pt/Ti/SiO2/Si substrates by the sol-gel process. The films were spin-coated at 2000 rpm for 30 secs and then pyrolysed for 5 mins at the temperature of 350C. This coating procedure was repeated for 3, 4, 5 and 6 times to obtain BST films with different thicknesses. After coating the films with the desired repetition times, the films were finally annealed in a conventional furnace at temperatures ranging from 600C to 800C with a 50C interval in between. The films obtained with an annealing procedure of 750C were polycrystalline with the presence of an impurity BaCO3 phase. The capacitance and leakage current were measured and used to extract information on the metal-BST interface. With the series capacitance model and modified Schottky emission equation, the thickness of the dead layers for Au/BST and Pt/BST interfaces were calculated to be less than 6 nm and 5 nm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号