首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

BaTiO3 (BTO) and SrTiO3 (STO) and BaxSr1-xTiO3 (x=0–1) (BST) thin films have been epitaxially grown on LaAlO3 and SrTiO3:Nb at a substrate temperature of 800°C using a new liquid source delivery technique called injection MOCVD. A X-ray study evidenced FWHMs of 0.16° and 0.45° for SrTiO3 and BaTiO3 respectively.

In a next step the feasibility of BaTiO3/SrTiO3 superlattices was studied. The multilayers obtained were epitaxially grown on LaAlO3 as well as on SrTiO3:Nb. The structural properties were studied using X-ray diffraction as well as XPS, proving the low interface roughness of 1nm. The XPS study also confirmed the absence of carbon contamination in the film.  相似文献   

2.
    
Abstract

We report measurements of gold circuits fabricated on four BaxSr1-xTiO3 ferroelectric films doped with 1% Mn grown on MgO substrates by laser ablation. Low frequency (1 MHz) measurements of σT and tanδ on interdigital capacitors are compared with high frequency measurements of phase shift and insertion loss on coupled microstrip phase shifters patterned onto the same films. The variation in temperature of both high and low frequency device parameters is compared. Annealed with amorphous buffer layer and unannealed films are compared. Room temperature figures of merit of phase shift per insertion loss of up to 58.4°/dB at 18 GHz and 400 V dc bias were measured.  相似文献   

3.
Abstract

Various composites of BSTO combined with other nonelectrically active oxide ceramics have been formulated. In general, the composites have adjustable electronic properties which can be tailored for use in phased array antennas and other phase shifting devices. The dielectric constant and the loss tangents have been reduced to enhance the overall impedance matching and thereby lowering the insertion loss of the device. In addition, the overall tunability, the change in the dielectric constant with applied voltage, is maintained at a sufficiently high level. The thickness limitation of the bulk materials is around 3–4 mils which can be used up to approximately 15 GHz. In order to increase the operating frequencies of the phase shifters, thick films were fabricated using non-aqueous tape-casting. The tapes were electrically characterized and compared to bulk ceramics. Also, laminated stacks of high dielectric constant and low dielectric constant alternating layers were fabricated.  相似文献   

4.
Abstract

Ferroelectric Ba(1-x)SrxTiO3 (x = 0.5 and 0.25) thin films were grown on (001) LaAlO3 by using pulsed laser ablation. Extensive x-ray diffraction and selected area electron diffraction reveal that the as-grown films were (001) oriented with a good in plane relationship of <100>BSTO // <100>LAO. Rutherford Backscattering Spectroscopy ion-channeling studies suggested that the films had excellent epitaxial quality and crystallinity with an ion beam minimum yield χmin of only 2.6%. Atomically sharp interfaces were seen by cross-sectional high-resolution electron microscopy, indicated that the density of misfit dislocations was consistent with the lattice mismatch from the theoretical calculation.  相似文献   

5.
《Integrated ferroelectrics》2013,141(1):863-869
Epitaxial (111) oriented ferroelectric (Ba1 ? xSrx)TiO3 (BST) films were deposited on MgO (111) single crystals using pulsed laser deposition. Structural properties of BST films were investigated using X-ray diffractometer. The dielectric properties of BST films were investigated under the dc bias field of 0–40 V using interdigital capacitors (IDT) fabricated by photolithography and etching process. The small signal dielectric properties of BST films were calculated by modified conformal mapping both the measured data using an impedance gain/phase analyzer and the reflection coefficient data measured using a HP 8510C vector network analyzer in 0.05–10 GHz at room temperature. The IDT capacitor based on (111) oriented BST film exhibits about 40% of capacitance change with an dc bias of 40 V which value is somewhat smaller than that of the IDT device based on (001) oriented BST film. But the dielectric quality factor value is about twice that of the device based on (001) oriented BST film.  相似文献   

6.
《Integrated ferroelectrics》2013,141(1):877-885
(Ba0.5Sr0.5)TiO3 (BST) thin films were deposited by pulsed laser deposition (PLD) and investigated as a function of Ni dopant concentration in low and high frequency regions. In low frequency region (<10 MHz), the Ni-dopant concentration in BST films has a strong influence on the material properties including dielectric and tunable properties. Ni-doped (≤3 mol%) BST films showed denser, smoother morphologies and smaller grain sizes than those with 6 and 12 mol% Ni. Dielectric constant and loss of 3 mol% Ni-doped BST films were about 980 and 0.3%, respectively. In addition, tunability and figure of merit of 3 mol% doped BST films showed maximum values of approximately 39% and 108, respectively. In high frequency region (>1 GHz), the frequency tunability range at center frequency of undoped BST and 3 mol% Ni-doped BST coplanar waveguide (CPW) resonators showed 102 and 152 MHz, respectively at 30 V dc bias. The Ni-doped BST thin films are possible in applications of microwave tunable capacitors.  相似文献   

7.
Thick BST films have been fabricated by a tape casting and firing method. Dielectric constants of BST films are changed from 5700 to 7000 at 1 MHz after focused beam annealing. Furthermore, surface morphologies and depth profile of chemistry have been altered after annealing. Especially, Sr atoms diffuse out to the surface, while Ba atoms diffuse into the center. The possibility of the surface alteration of the thick films have been clearly demonstrated in this study, which may applied for the integration of ferroelectrics and other dielectrics and/or conductors for low cost microwave tunable devices.  相似文献   

8.
Abstract

Effect of post-sintering treatment on PTCR behavior of (Sr0.2Ba0.8)TiO3 materials prepared by microwave-sintering (ms) process was compared to that prepared by rapid thermal sintering (RTS) process. The microwave-sintering process needed only 1130°C-40 min to effectively densify (Sr0.2Ba0.8)TiO3 materials. The grain size was around 6 μm and PTCR characteristics was around ρmaxmin≈ 101.75, with Tc = 50°C. Lowering the cooling rate after sintering substantially increases the resistivity jump (ρmaxmin) from 102 to 103.4, without altering the microstructure. The annealing at 1250°C for 2 h markedly increased the resistivity jump to (ρmaxmin)≈106. On the other hand, the rapid thermal sintering (RTS) process required 1320°C-30 min to fully develop the good microstructure (~15 μm) and PTCR property (ρmaxmin ~ 103.0). Post-sintering process, including cooling rate control and annealing, did not improve the electrical properties of these samples, that is ascribed to the slow-cooling rate characteristics of RTS-process for a temperature lower than 800°C.  相似文献   

9.
Abstract

Ferroelectric Pb(Zr,Ti)O3 (PZT) thin films were prepared by pulsed excimer laser deposition on Silicon-on-Insulator (SOI) substrates with and without an electrode. Their properties can be improved by rapid thermal annealing, based on the structural and interfacial characteristics analysis by X-ray diffraction, Rutherford backscattering spectroscopy and automatic spreading resistance measurements. The thin films were revealed of to be polycrystalline perovskite structure with mainly ?100? and ?110? orientations; the crystallite size and the structure are dependent on the annealing time. The PZT thin films did not interact with the top silicon layers of SOI, and the composition was on the tetragonal side of the morphotropic phase boundary in the PbTiO3-PbZrO3 phase diagram.  相似文献   

10.
    
The growth of Ba0.55Sr0.45TiO3 films on p-type silicon substrate with depletion and enhancement treatments have been conducted in this research. The aims were to examine film sensitivity as light sensor and value range, resolution, acuracy level, and their hysteresis as temperature sensor. The films were annealed at 800, 850, and 900 °C for 15 hours. In this work, enhancement BST of 850 °C was the best quality film and utilized as light and temperature sensors. Its implementation has been successfully conducted on ATMega8535 microcontroller-based automatic drying system model by exploiting the working principle of the BST films as automatic switch.  相似文献   

11.
Abstract

MFIS structures having excellent clear interfaces and well-crystallized ferroelectric layer were successfully fabricated by a newly developed ultra thin metal buffer layer process on SiO2/Si. We examined the effect of sputtered Zr or ZrO2 ultra thin films as a buffer layer for PbxLa1?xTiO3 (PLT) growth. TEM observation revealed that the buffer layer formation process in which Zr oxidized after the metal deposition had advantages to produce MFIS structures. This method is also superior for the crystallization and the control of the orientation of PLT thin film on amorphous SiO2. Especially, for buffer layer thicknesses below 10 nm, preferred c-axis oriented PLT thin films were grown. The I-V characteristics of MFIS-FET fabricated by the proposed method showed a clear memory window due to the remanent polarization of the ferroelectric thin film. This process is the most attractive candidate for realizing MFIS structure memory.  相似文献   

12.
Abstract

(Ba0.7Pb0.3)TiO3 and (Ba0.4Pb0.6)TiO3 materials possessing double critical temperature (Tc ) and single high-Tc in resistivity-temperature (ρ-T) behavior, respectively, were obtained by microwave sintering at 1050°C for 5 minutes. These characteristics were ascribed to the existence of the dual phases with core-shell structure. The cooling-rate control modified the relative magnitude of low-Tc and high-Tc resistivity jumps, without altering the Tc -values. It occurred via the change in relative proportion of the core and shell phases.  相似文献   

13.
Partial electronic conductivity and chemical diffusivity of Li have been measured on the system of Li3xLa2/3–xTiO3 (LLT) with x = 0.13, a prospective Li+ electrolyte, against oxygen activity in the range of 10–22 < aO2 < 0.21 at 557, 610 and 663C, respectively by an ion-blocking polarization technique. It is found that the electronic conductivity of LLT, which in air is essentially an ionic conductor, varies as aO2–1/4 to render it mixed-conductive in reducing atmospheres, say, in aO2 < 10–12. The chemical diffusivity of component Li also increases from a value of the order of 10–8 cm2/s in air atmosphere up to a maximum on the order of 10–3 cm2/s as the electronic conductivity increases with decreasing oxygen activity. This is attributed to the variation of the electronic transference number and the thermodynamic factor with oxygen activity. The latter has been evaluated to be on the order of 10–103.  相似文献   

14.
Abstract

Thin films of PbTiO3, BaTiO3 and (PbxBa1-x)TiO3 (PBT) have been prepared by metal-organic chemical vapor deposition using a horizontal reactor with an aerosol-assisted liquid delivery system. Structural and electrical properties have been investigated as a function of the lead content x. First results on PBT thin films grown on platinized silicon substrates show, for x < 0.8, an increasing tetragonal distortion of the lattice cell (c/a >1), and accompanying ferroelectric behavior which is similar to the bulk material. For smaller lead content (x < 0.8) no ferroelectric behavior is established and a small tetragonal distortion of opposite type (c/a <1) is observed. This distortion is attributed to a thermally induced tensile film stress and may be responsible for the suppression of the ferroelectric phase transition.  相似文献   

15.
The research objective of this study was to examine whether Zn was an effective doping element for thermal conductivity. Ca1-xZnxFe2O4 (x = 0.0–0.5) were synthesized by solid state reaction method. The XRD results showed that all samples were mixed phase of CaFe2O4 and ZnFe2O4. The structure of Ca1-xZnxFe2O4 (x = 0.0–0.5) belonged to a group of an orthorhombic system (space group: Pbnm). It was observed that all the samples of Ca1-xZnxFe2O4 (x = 0.0–0.5) had positive Seebeck coefficient as shown on p-type semiconductor behavior. Thus thermal conductivity tended to decrease with increasing x value. The Ca0.6Zn0.4Fe2O4 showed lowest thermal conductivity of 6.52 W m?1 K?1 at 473 K, which was lower than 50.81% of CaFe2O4. These results suggested that Zn was an effective doping element for improving the thermal conductivity of Ca1-xZnxFe2O4.  相似文献   

16.
    
ABSTRACT

The combined effects of interface (represented by the extrapolation length) and thickness on polarization of ferroelectric thin films derived by sol-gel method are investigated using Gingzburg-Landau-Devonshire theory. The polarization profile, the average and the maximal polarization are numerically modeled and analyzed for various film thicknesses and degrees of interface imperfection. Results show that the polarization near the interface is dramatically suppressed due to the interface effects, and the average and maximal polarizations both decrease significantly with the reduced thickness down to 50 nm or below. The simulation results indicate that the interface effects play a major role behind the polarization reduction when the thickness is decreased.  相似文献   

17.
《Integrated ferroelectrics》2013,141(1):1175-1184
(Ba0.7Sr0.3)TiO3 and SrTiO3 thin films were deposited on Pt electrodes in a planetary multi-wafer MOCVD reactor. The nucleation behavior and the size of the stable nuclei were investigated by different SPM techniques. Characteristic differences were observed for different deposition temperatures, i.e. a homogeneous nucleation of small BST grains on the larger Pt grains at 565°C and a dominating nucleation at the grain boundaries at 655°C. The micro structural evolution after further film growth was investigated by HRTEM and revealed randomly oriented grains (typical inplane size 10–20 nm) with a high density of twins at 565°C and (100)-oriented defect free grains of only slightly increased size at 655°C. For SrTiO3 the inplane grain size was increased, however, the (100) texture was less perfect. As the electrical properties like permittivity and also leakage current depend on film thickness the final discussions of the electrical properties are based on thickness series (5 nm–100 nm films) and evaluated within the phenomenological dead layer model.  相似文献   

18.
BaO ⋅ Nd2O3 ⋅ 4TiO2—based ceramics were prepared by the mixed oxide route. Specimens were sintered at temperatures in the range 1200–1450C. Microstructures were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM); microwave dielectric properties were determined at 3 GHz by the Hakki and Coleman method. Product densities were at least 95% theoretical. The addition of up to 1 wt% Al2O3 to the starting mixtures reduced the sintering temperatures by at least 100C. Incorporation of small levels of Al into the structure (initially Ti sites) led to an increase in Q × f values, from 6200 to 7000 GHz, a decrease in relative permittivity (εr) from 88 to 78, and moved the temperature coefficient of resonant frequency (τf) towards zero. The addition of 0.5 wt% Al2O3 with 8 wt% Bi2O3 improved densification, increased both εr (to 88) and Q× f (to 8000 GHz) and moved τf closer to zero. Ceramics in the system (1 − x)BaO ⋅ Nd2O3 ⋅ 4TiO2 + xBaO ⋅ Al2O3 ⋅ 4TiO2 exhibited very limited solid solubility. The end member BaO ⋅ Al2O3 ⋅ 4TiO2 was tetragonal in structure with the following dielectric properties: εr = 35; Q× f = 5000 GHz; τf = −15ppm/C. Microstructures of the mixed Nd-Al compositions contained two distinct phases, Nd-rich needle-like grains and large Al-rich, lath-shaped grains. Products with near zero τf were achieved at compositions of approximately 0.14BaO ⋅ Nd2O3 ⋅ 4TiO2 + 0.86BaO ⋅ Al2O3 ⋅ 4TiO2, where Q× f = 8200 GHz and εr = 71.  相似文献   

19.
A two-step molten salt synthesis process was utilized to fabricate Sr3Ti2O7 and SrTiO3. High aspect ratio SrTiO3 seed crystals were developed by optimizing processing conditions such as temperature, salt-to-oxide ratio, and flux type in a systematic fashion. Sr3Ti2O7 seeds were synthesized at temperatures ranging from 1050–1350°C, using salt-to-oxide ratios of 3:1, 1:1, and 1:3, and various salt types, including NaCl, KCl, and a 1:1 combination of NaCl and KCl. Sr3Ti2O7 seeds synthesized at 1250°C with a 1:1 salt-to-oxide ratio in 100% NaCl salt resulted in a majority of higher aspect ratio platelets and elongated platelets as opposed to lower aspect ratio cubic-like and tetragonal-like morphologies. The seeds were 10–40 μm in length with aspect ratios of highly elongated platelets as high as 25:1. A second MSS step was used to synthesize SrTiO3 seeds of the proper composition by TiO2 addition to the Sr3Ti2O7 seeds and heat treatment at 1100°C. These studies showed that highly anisotropic SrTiO3 seeds could be produced at 1250°C using a 1:1 salt-to-oxide ratio in 100% NaCl flux. XRD studies of the resulting SrTiO3 seeds revealed that the increase in aspect ratio for these particular seeds also resulted in the enhancement of (200) peaks, which are of major interest for texturing of PMN-PT.  相似文献   

20.
《Integrated ferroelectrics》2013,141(1):1475-1482
Ferroelectric PZT thin films were deposited by liquid delivery MOCVD using a cocktail solution. The cocktail solution consisted of Pb(METHD)2, Zr(METHD)4 and Ti(MPD)(METHD)2 diluted with ethylcyclohexane. The films deposited on Pt/Ti/SiO2/Si at a substrate temperature of 500°C consisted of PZT, PbO and PbPtx, and showed poor properties. However, after annealing at 450°C in air for thirty minutes, the PbPtx phase disappeared while the volume of the PbO phase increased. The hysteresis properties were also improved by annealing at 450°C. After annealing at 600°C in air for thirty minutes, the PbPtx and the PbO phases disappeared perfectly and the PZT thin films showed good hysteresis properties with the remanent polarization of 30 μC/cm2 and the coercive field of 88 kV/cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号