首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Lead-free (Ba0.85Ca0.15) (Ti0.90Zr0.10)O3 (15/10 BCZT) piezoelectric ceramics were prepared by a standard solid solution and sintered at different temperature of 1300 °C and 1500 °C at a time. The 15/10BCZT piezoceramics were prepared at 1300 °C sintering temperature by doping different amount of MnO2.The ceramics show a phase transition from a freoelectric tetragonal phase to a rhombohedral and tetragonal ferroelctric phase and to a single rhombohedral phase with increasing MnO2 content. The addition of MnO2 significantly improves the sinterbility of the 15/10BCZT piezoceramics, and reducing the sintering temperature from 1500 °C to 1300 °C by 200 °C but showing comparable piezoelectric properties. With 0.4 mol% of the dopant, ~96.5% of the theoretical density of the ceramics was achieved with excellent piezoelectric coefficient d33 ~ 534pC/N, which is nearly equal to the value obtained from the ceramics sintered at 1500 °C which has a piezoelectric coefficient d33 ~ 570pC/N, high density (~ 5.59 g/cm3), maximum remnant polarization (Pr = 24 μC/cm2), relatively large grain size (10.4 μm) and the least coercieve field (Ec = 0.42 kV/mm). However, a high concentration of MnO2 deterioated the properties of the ceramics because of increasing of oxygen vacancies and associated defects. The results indicate that the BCTZ-y mol% MnO2 ceramics are one of the promising lead-free piezoelectric candidates for high temperature applications.

  相似文献   

2.
A new low-temperature processing method to prepare SrBi2Ta2O9 thin films is proposed. These thin films were prepared on Pt/Ta/SiO2/Si substrates by a sol-gel method, and their structural and electrical properties were investigated. Films were annealed before and after the top Pt electrode deposition. The first annealing was performed in a 760-Torr oxygen atmosphere at 600 °C for 30 min, and the second annealing was performed in a 5-Torr oxygen atmosphere at 600 °C for 30 min. The films were well crystallized and fine-grained after the second annealing. The electrical characteristics of the 200-nm-thick film obtained by this new process were as follows: remanent polarization, Pr = 8.5 μC/cm2; coercive field, Ec = 36 kV/cm; and leakage current density, IL = 1 × 10−7 A/cm2 (at 150 kV/cm). This process is very attractive for highly integrated ferroelectric nonvolatile memory applications. © 1997 Scripta Technica, Inc. Electr Eng Jpn, 120(2): 27–33, 1997  相似文献   

3.
Abstract

Highly oriented, dense, and crack-free ferroelectric and paraelectric thin-films on three inch diameter Pt/Ti/Si3N4/Si (100) substrates were obtained by polymeric sol-gel processing. Ferroelectric PZT thin-films were fabricated at temperatures as low as 550°C within 15 minutes by rapid thermal annealing. The films heat treated at 700°C for 5 minutes were single grain thick and exhibited Pr, Psp, and Ec in the ranges of 29–32 μC/cm2, 44–53 μC/cm2, and 50–60 kV/cm, respectively, and high speed switching times below 5 ns on 30×30 μm2 electrodes. A switching time of 2.7 ns was observed on 19×19 μm2 area electrodes at a field of 200 kV/cm. Results of low and high field characterization on paraelectric PLT thin-films which were conventionally heat treated indicated that it has an excellent potential for use in ULSI DRAMs and as decoupling capacitors. These films showed a high charge storage density (15 μC/cm2) and a low leakage current (0.5 μA/cm2) at a field of 200 kV/cm. Also, the charging time for a capacitor area of 1 μm2 at 200 kV/cm was estimated to be 0.10 ns.  相似文献   

4.
《Integrated ferroelectrics》2013,141(1):769-779
Ferroelectric Na0.5K0.5NbO3 (NKN) thin films were grown on the Pt80Ir20 polycrystalline substrates by pulsed laser deposition (PLD) and radio frequency-magnetron sputtering (RF) technique using the same stoichiometric Na0.5K0.5NbO3 ceramic target. X-ray diffraction proved both PLD- and RF-made Na0.5K0.5NbO3/Pt80Ir20 films are single phase and have preferential c-axis orientation. Temperature dependence of dielectric permittivity reveals the presence of two phase transitions around 210 and 410°C. Capacitance vs. applied voltage C-V @ 100 kHz, I-V, and P-E hysteresis characteristics recorded for the vertical capacitive structures yielded loss tanδ = 0.026 and 0.016, tunability about 44.5 and 30% @ 100 kV/cm, Ohmic resistivity 6.7 × 1012 Ω·cm and 0.2 × 1012 Ω·cm, remnant polarization 11.7 and 9.7 μC/cm2, coercive field 28.0 and 94.6 kV/cm for PLD- and RF-films, respectively. Piezoelectric test carried out in hydrostatic conditions showed piezoelectric coefficient d H = 21 for PLD-NKN and 15 pC/N for RF-NKN film.  相似文献   

5.
Abstract

The high adhesive, single crystal lead germanate films of 5–105 μm in thick were fabricated on platinum substrates by in situ sol-gel technique. The stoichiometry of the films was closed to 5:3:11 without any oxygen deficiency. The microstructure of better films consisted of closed packed hexagonal crystals of 200–300 μm in size. Ferroelectric transition was sharp with Curie point 170–180°C, ε20=30–40, tgδ20?0.02, εmax?200, Ps=3.2 μC/cm2, Ec=16 kV/cm, ρ=108–109 Ωcm. All these parameters (with the exception of εmax) were in a good agreement with bulk single crystals ones.  相似文献   

6.
Abstract

The effects of deposition temperature on the properties of thin films of sputtered lead-zirconate-titanate (PZT) have been studied for ULSI DRAM storage capacitor dielectric applications. The films were deposited by reactive dc magnetron sputtering from a multi-component target. The grain size for the films deposited at 400°C was found to be less than 1000 Å, while it was ~ 10–30 μm for films deposited at 200°C. Small grain-sized material is desirable since it leads to better cell-to-cell uniformity in terms of charge storage capacity and other electrical and reliability properties. The optimum lead compensation was found to increase as the deposition temperature (T dep) increased. Leakage current density stays fairly constant as T dep is varied. As-deposited films, with a deposition temperature of 500°C, were rich in the perovskite phase and showed a high charge storage density of 11.2 μC/cm2 and a low leakage current density of 5.1 × 10?7 A/cm2 (both at 1.5 V). This implies the possibility of eliminating the high temperature crystallization-annealing step.  相似文献   

7.
Films of PZT about 0.2 μm thick with the composition PbZr0.53Ti0.47O3 were prepared using the metalloorganic decomposition (MOD) process. The amorphous films produced by pyrolysis at 350°C were annealed at 550, 575, 600 and 650°C for 10 minutes, 1 hour or 4 hours. Films annealed at temperatures below 550°C showed no ferroelectric behavior while others annealed above 650°C showed signs of loss of ferroelectric behavior. Most films demonstrated satisfactory ferroelectric properties such as low switching voltage and high polarization values. Some PZT films also demonstrated fatigue life-time of more than 109 switching reversals. The performance of the films was dependent on the annealing time and temperature. It was found that films with better initial polarization values did not necessarily demonstrate better fatigue behavior. The causes of film degradation as a result of switching based on the pinning of domains at grain boundaries triggered by the migration of pores is discussed.  相似文献   

8.
Abstract

CeO2 and SrBi2Ta2O9 (SBT) thin films for MFISFET (metal-fcrroelectrics-insulator-semiconductor field effect transistor) were deposited by rf sputtering and pulsed laser deposition method, respectively. The effects of oxygen partial pressure during deposition for CeO2 films were investigated. The oxygen partial pressure significantly affected the preferred orientation, grain size and electrical properties of CeO2 films. The CeO2 thin films with a (200) preferred orientation were deposited on Si(100) substrates at 600°C. The films deposited under the oxygen partial pressure of 50 % showed the best C-V characteristics among those under various conditions. The leakage current density of films showed order of the 10?7~10?8 A/cm2 at 100 kV/cm. The SBT thin films on CeO2/Si substrate showed dense microstructure of polycrystalline phase. From the C-V characteristics of MFIS structure composed of the SBT film annealed at 800°C, the memory window width was 0.9 V at ±5 V. The leakage current density of Pt/SBT/CeO2/Si structure annealed at 800°C was 4×10?7 A/cm2 at 5 V.  相似文献   

9.
Beneficial effect of nano-sized PZT powder incorporation on modifying the characteristics of Pb(Zr0.52Ti0.48)O3, PZT films was demonstrated. The amorphous phase derived from metallo-organic-decomposition (MOD) process started to crystallize at a post-annealing temperature as low as 500°C and can withstand 650°C post-annealing temperature process without inducing the PbO-loss phenomenon. However, 500°C post-annealed PZT films still exhibit paraelectric properties, which can be ascribed to the co-existence of large proportion of amorphous phase, surrounding the crystalline phase. It needs at least 650°C post-annealing process to fully developed the pervoskite structure for PZT films. The remnant polarization (Pr) of the PZT films increases with the proportion of crystalline phase, achieving Pr = 24.9 μC/cm2 for 650°C annealed films, with coercive field (Hc) around Ec = 373 kV/cm.  相似文献   

10.
Mo-doped Bi3.35La0.75Ti3O12 (BLTM) films were deposited on Pt/Ti bottom electrodes by using a sol-gel method and crystallized at 700°C for 30 min in O2 atmosphere. The ferroelectric properties were greatly improved by substituting B-site ions with Mo ions and the BLTM films showed strong preferred (117) orientation. Typical remanent polarization (2Pr) and coercive field (2Ec) values were 32.0 μC?cm?2 and 158 kV?cm?1, respectively. It was also found that the leakage current densities in the BLTM films were lower than those in Bi3.35La0.75Ti3O12 (BLT) films.  相似文献   

11.
Abstract

Bi–layered ferroelectric SrBi2Ta2O9 (SBT) films were successfully prepared on Pt/Ti/SiO2/Si substrates at 650°C by a modified rf magnetron sputtering technique. The SBT films annealed for 1 h in O2 (760 torr) and again for 30 min in O2 (5 torr) at 650°C show a average grain size of about 49 nm. The SBT films annealed at 65 0°C have a remanent polarization (Pr) of 6.0 μC/cm2 and coercive field (Ec) of 36 kV/cm at an excitation voltage of 5 V. The films showed fatigue–free characteristics up to 4.0 × 1010 switching cycles under 5 V bipolar pulse. The retention characteristics of SBT films looked very promosing up to 1.0 × 105 s.  相似文献   

12.
Abstract

There has been increasing interest in ferroelectric lead zirconate titanate (PZT) films for the applications in piezoelectric and pyroelectric devices. Many potential applications require a film thickness of above 10 μm for higher force, better sensitivity and stability. But it is very difficult to fabricate the PZT thick film on the silicon substrate because of the volatility of PbO and the interdiffusion of the Pb and Si through the bottom electrode during the sintering at normal temperatures (such as above 1200°C). We speculated densification and reaction mechanism of the PZT thick films fabricated at relatively low temperature (under 1000°C) without sintering aids. The PZT thick films were screen-printed on Pt / Al2O3 substrate using a paste of PbO, ZrO2 and TiO2 powder mixture. Highly densified PZT thick films could be fabricated on Pt / Al2O3 substrate at 1000°C, and we achieved the density, remanent polarization, coercive field, dielectric permittivity, dissipation factor and breakdown field of 98%, 10 μC/cm2 and 20 kV/cm, 540, 0.009 and 15 MV/m, respectively. The results show the possibility of densification of the PZT thick film at relatively low temperature without sintering aids, and the results are promising for the use of PZT thick films in various applications.  相似文献   

13.
《Integrated ferroelectrics》2013,141(1):1475-1482
Ferroelectric PZT thin films were deposited by liquid delivery MOCVD using a cocktail solution. The cocktail solution consisted of Pb(METHD)2, Zr(METHD)4 and Ti(MPD)(METHD)2 diluted with ethylcyclohexane. The films deposited on Pt/Ti/SiO2/Si at a substrate temperature of 500°C consisted of PZT, PbO and PbPtx, and showed poor properties. However, after annealing at 450°C in air for thirty minutes, the PbPtx phase disappeared while the volume of the PbO phase increased. The hysteresis properties were also improved by annealing at 450°C. After annealing at 600°C in air for thirty minutes, the PbPtx and the PbO phases disappeared perfectly and the PZT thin films showed good hysteresis properties with the remanent polarization of 30 μC/cm2 and the coercive field of 88 kV/cm.  相似文献   

14.
Abstract

A modified metal-organic decomposition process, MOD has been successfully utilized to improve the ferroelectric properties of Pb(Zr0.52Ti0.48)O3, PZT, thin films. Multilayer PZT/Pt(Si) films, which contain 0.12 μm layer of spin coated PbO-excess (10 mol%) precursors on top of 0.12 μm layer of stoichiometric PZT precursors, exhibit superior ferroelectric properties (Pr=14.2 μC/cm2; Ec=62 kV/cm) to the single layer PZT/Pt(Si) films of the same thickness (0.24 μm), which are either stoichiometric or 10 mol% Pb-enriched. The ferroelectric properties are further improved when the PZT films were synthesized using a thin pulsed laser deposited (PLD) prenucleation layer (0.06 μm). The subsequently MOD-prepared PZT films posses high remanent polarization (Pr=23.2–26.6 μC/cm2) and low coercive field (Ec=62.9–69.0 kV/cm).  相似文献   

15.
Abstract

The ferroelectric SBT films were deposited on Pt/Ti/SiO2/Si substrates by liquid injection metalorganic chemical vapor deposition (MOCVD) with single-mixture solution of Sr[Ta(OEt)5(dmae)]2 and Bi(C6H5)3. The Sr/Ta and Bi/Ta ratio in SBT films depended on deposition temperature and mol ratio of precursor in the single-mixture solution. At the substrate temperature of 400°C, Sr/Ta and Bi/Ta ratio were close to 0.4 and 1 at precursor mol ratio of 0.5~1.0. As-deposited film was amorphous. However, after annealing at 750°C for 30 min in oxygen atmosphere, the diffraction patterns indicated polycrystalline SBT phase. The remanent polarization (Pr) and coercive field (Ec) of SBT film annealed at 750°C were 4.7 μC/cm2and 115.7 kV/cm at an applied voltage of 5 V, respectively. The SBT films annealed at 750°C showed practically no polarization fatigue up to 1010 switching cycles.  相似文献   

16.
Ferroelectric La-modified lead titanate (PLT) thin film were grown on Pt/Ti/SiO2/Si by sputtering the Pb0.93La0.07TiO3 targets containing an amounts of excess 8% PbO. The effects of sputtering and annealing conditions on the crystalline structures and the surface morphologies of the PLT thin films have been investigated. The remanent polarization (Pr) and the coercive field of the PLT film through rapid thermal annealing (RTA) was 10.2 μC/cm2 and 45 kV/cm respectively. The maximum pyroelectric coefficient reached 19 nC/cm2.K at 20°C.  相似文献   

17.
This study is an experimental investigation on thermal energy harvesting using pyroelectric ceramics. Hot and cold air sources were used for generating temperature gradient in PbZrxTi1?xO3 (PZT-5H) ceramics. Four different frequencies of (heating and cooling process) 0.025, 0.05, 0.1 and 0.2 Hz were investigated for optimizing power/voltage output. Maximum output voltage of 2.51 V (across 4.7 μF and 5 MΩ) was achieved at 0.05 Hz frequency with temperature variation between 100°C and 65°C. Furthermore, maximum power density of 2.35 μW/cm3 was obtained at 0.05 Hz across 4.7 μF load capacitor and 5 MΩ load resistance. In addition to this a battery of 7 mAh capacity was charged up to 1.21 V in 55 minutes using continuous heating and cooling processes with frequency of 0.4 Hz.  相似文献   

18.
Lead zirconium titanate (PZT) films (Zr/Ti=45:55) with a high dielectric constant are prepared successfully on the low-resistance Si substrate in sol–gel dip-coating process with PT film used as the buffer layer. The dielectric and ferroelectric properties of the films as well as the relationship between crystallization and preparing condition are studied. It is shown that the PZT ferroelectric thin films with a (110) preferred orientation and a well-crystallized perovskite structure could be obtained after annealing at 800°C for 15 min. The particle size of the sample is about 14–25 nm. The PE hysteresis loops are measured by means of the Sawyer-Tower test system with a compensation resistor at room temperature. The remanent polarization (P r) and coercive electric field (E c) of the measured PZT thin films are 47.7 μC/cm2 and 18 kV/cm, respectively. The relative dielectric constant ε r and the dissipation factor tgδ of the PZT thin films were measured with an LCR meter and were found to be 158 and 0.04–0.005, respectively. Translated from “Preparation and Characterization of PZT Films Fabricated on Si Substrates” published in Chinese Journal of Semiconductors, 2004, 25(4): 404–409 (in Chinese)  相似文献   

19.
Na0.5?K0.5NbO3 (KNN) ceramics were sintered at different temperatures (970 °C, 1000 °C, 1030 °C, 1060 °C, and 1090 °C) for 3 h by a pressureless sintering method. The powders had been synthesised by sol–gel method, using citric acid as a coordination agent and ethylene glycol as an esterifying agent. The effects of temperature on the phase, microstructure, dielectric, ferroelectric, and piezoelectric properties of the as-prepared ceramics were analysed. The results revealed that all of the ceramics had a pure perovskite phase with orthorhombic symmetry. The piezoelectric constant (d 33), the relative dielectric constant (ε r), the planar electromechanical coupling coefficient (K p), and the remnant polarization (P r) initially increased and then decreased with increasing of temperature in such KNN ceramics. The volatilization of sodium and potassium increased with increasing sintering temperature. Over the range of temperatures studied, those ceramics sintered at 1060 °C had the following optimal properties: (ρ?=?3.97 g/cm3, d 33?=?119 pC/N, ε r?=?362.46, tan δ?=?0.05, K p?=?0.23, P r?=?11.97 μC/cm2, E c?=?10.35 kV/cm, and T c?=?408 °C).  相似文献   

20.
Abstract

Ferroelectric Bi4Ti3O12 thin films were deposited on Pt-coated oxidized Si substrate by electron cyclotron resonance (ECR) sputtering using ceramic targets. Crystal structure and dielectric properties of the films were investigated as functions of sputtering conditions such as substrate temperature and sputtering gas. Using a target with excess Bi content compared to stoichiometric composition was required to compensate Bi re-evaporation from the substrate and to obtain a perovskite single phase at 600°C. (117)-oriented films exhibited ferroelectric hysteresis loops. The remanent polarization and coercive field of the films were 9.8 μC/cm2 and 180 kV/cm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号