首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of Ba(NO3)2 with TiO2 was studied by thermogravimetric (TG) and differential scanning calorimetric (DSC) techniques up to 1000°C and in nitrogen atmosphere. It was found that the formation of BaTiO3 takes place above 600°C. BaTiO3 powder was prepared by calcination of Ba(NO3)2 and TiO2 precursor mixture at 800°C for 8 h. X-ray diffraction analysis of the synthesized BaTiO3 confirmed the formation of tetragonal phase. Average crystallite size was found to be 44 nm, For the electrical and morphological characterization pellets of the obtained powder were sintered at 1000 °C for 12 h. Scanning electron micrograph (SEM) exhibits spherical and rod shaped grains. The dielectric constant, dissipation factor, complex plane impedance and ac conductivity of the sintered pellet has been measured in the temperature range of 40–600°C and frequency range of 100 Hz–2 MHz. DC conductivity of the sample was obtained from the impedance data. The conductivities (both ac and dc) and relaxation time (τ) exhibit two regions of temperature dependence, namely region I, which represents (280–450°C) and region II, which governs (450-600°C). Conduction and relaxation in both the temperature regions are explained in terms of hopping of electrons and doubly ionized oxygen vacancies (VO??).  相似文献   

2.
Investigations were carried out on a series of MgAl2-2xY2xO4 (x?=?0.00–0.05) nanoparticles prepared in steps of 0.01 by chemical co-precipitation method to study the effect of yttrium substitution at aluminum site on the structural, dielectirc and electrical properties. The single phase cubic spinel structure of all the samples was confirmed by X-ray diffraction (XRD). The Fourier transform infrared spectroscopy (FTIR) study shows two strong absorption bands in the frequency range 400–800 cm?1, on the tetrahedral and octahedral sites respectively. Elemental analysis by Energy dispersive X-ray fluorescence (EDXRF) shows that samples are stoichiometric. The scanning electron microscopy (SEM) study reveals surface morphology of nanoparticles. Transmission electron microscopy (TEM) study shows the individual nanoparticles size and validates the nanocrystalline nature of the samples. The variation of dielectric permittivity at room temperature as a function of frequency (1 KHz to 1 MHz) suggests the dielectric dispersion due to Maxwell-Wagner Interfacial Polarization. AC conductivity study reveals that the conduction is due to small polaron hopping. The electrical modulus analysis shows that nanocrystalline MgAl2?2xY2xO4 system exhibits non Debye type relaxation. The dc resistivity was found to increase with increase in yttrium content.  相似文献   

3.
《Integrated ferroelectrics》2013,141(1):863-869
Epitaxial (111) oriented ferroelectric (Ba1 ? xSrx)TiO3 (BST) films were deposited on MgO (111) single crystals using pulsed laser deposition. Structural properties of BST films were investigated using X-ray diffractometer. The dielectric properties of BST films were investigated under the dc bias field of 0–40 V using interdigital capacitors (IDT) fabricated by photolithography and etching process. The small signal dielectric properties of BST films were calculated by modified conformal mapping both the measured data using an impedance gain/phase analyzer and the reflection coefficient data measured using a HP 8510C vector network analyzer in 0.05–10 GHz at room temperature. The IDT capacitor based on (111) oriented BST film exhibits about 40% of capacitance change with an dc bias of 40 V which value is somewhat smaller than that of the IDT device based on (001) oriented BST film. But the dielectric quality factor value is about twice that of the device based on (001) oriented BST film.  相似文献   

4.
The ferroelectric ceramic Ba5LaTi3V7O30 has been synthesized by solid-state reaction technique. Preliminary X-ray structural analysis confirmed a single-phase formation (orthorhombic crystal system) of the compound. Surface morphology of the compound was studied by scanning electron microscopy (SEM). Detailed studies of electrical properties (i.e., dielectric constant, loss tangent, ac and dc conductivity) as a function of temperature (RT - 773?K) at four different frequencies, 1?kHz, 10?kHz, 100?kHz and 1?MHz show ferroelectric—paraelectric phase transition of the compound. The impedance spectra show two distinctly separated regions in wide temperature range corresponding to grain boundary and grain interior contributions. The activation energy has been evaluated from ac conductivity and dc conductivity following Arrhenius equation is 0.15?eV at 1?MHz and 0.28?eV, respectively. The temperature dependence of electrical conductivity shows that the conductivity increases with increase in temperature suggesting that the compounds have a negative temperature coefficient of resistance (NTCR) behaviour. The conductivity pattern shows that it is strongly frequency dependent and obeys Jonscher’s power relation.  相似文献   

5.
(001) oriented (Sr,Ba)Nb2O6 (SBN) thin films were deposited on MgO (001) single crystal substrates by the pulsed laser deposition method. Structural properties of SBN films were investigated using X-ray diffractometer. The microwave dielectric properties of SBN films were examined by calculating the scattering parameter obtained using a HP 8510C vector network analyzer with the frequency range 0.5–20 GHz at room temperature under the dc bias field of 0–80 kV/cm for interdigital capacitors (IDT) and coplanar waveguide (CPW) device based on SBN/MgO layer structure. Thick metal electrode patterns were fabricated by dc sputtering deposition, photolithography and etching process. The IDT device based on (001) oriented SBN films exhibited about 40% capacitance tunability with an electric field change of 80 kV/cm at room temperature, and the dielectric quality factor was about 20 at 12 GHz with no dc bias.  相似文献   

6.
Multilayer ceramic capacitors based on BaTiO3 dielectric compositions and Ni inner electrodes have complex interfacial reactions that impact the continuity of the inner electrode microstructure. Previously we demonstrated that through the addition of Cr to Ni, a significant improvement in the continuity of ultra-thin Ni electrodes in Ni–BaTiO3 multilayer capacitors could be achieved. Here, the effect of the Cr addition to the nickel electrode pastes is studied with regard to the electrical properties. Low-field electrical measurements demonstrate no major differences between Cr doped Ni and undoped Ni. However, high-field measurements show a significant decrease to the total capacitor resistance. Under a critical electrical bias the conductivity significantly increases due to a Fowler–Nordheim tunneling conduction though the interfacial Schottky barrier at the dielectric–electrode interface; the onset voltage of this conduction is much lower than with the undoped nickel. Based on these results, we evaluate criteria for the selection of an appropriate refractory metal in order to improve the Ni electrode continuity.  相似文献   

7.
Abstract

Paraelectric [Pb, La]TiO3 (PLT, La = 28 mol%) thin films were prepared by dc magnetron sputtering using a multi-element metal target. In order to crystallize the as-deposited PLT thin films into the cubic perovskite structure, a heat treatment was applied at annealing temperatures ranging between 450 and 750°C. The electrical measurements such as dielectric properties, polarization-electric field (P-E), and current-voltage (I–V) were investigated with the change of annealing temperature. The dielectric constant and dissipation factor of paraelectric PLT film annealed at 750°C were 1216 and 0.018, respectively. The charge storage density was approximately 12.5 μC/cm2. The leakage current density in PLT film annealed at 650°C was around 0.1 μA/cm2 at the electric field of 0.25 MV/cm.  相似文献   

8.
A lead free polycrystalline material Ba(Bi0.5Ta0.5)O3 was prepared by a standard high-temperature solid-state technique (calcination temperature?=?1180 °C and sintering temperature?=?1200 °C) using high-purity ingredients. The room temperature X-rays diffraction analysis of the material has confirmed its formation in the monoclinic crystal system. The study of microstructure using scanning electron microscopy (SEM) shows that the compound has well-defined grains uniformly distributed throughout the surface of the sample. Detailed studies of dielectric and impedance properties of the material were carried out in a wide frequency range (1 kHz ?1 MHz) at different temperatures (30 °C to 490 °C). Dielectric study shows that the material has ferroelectric properties with diffuse-phase transition around 315 °C. Complex impedance spectroscopic analysis establishes some correlation between the microstructure and electrical properties of the material. The frequency dependence of ac conductivity follows the Jonscher’s power law. The dc conductivity, calculated from the ac conductivity spectrum, shows the negative temperature coefficient of resistance behavior similar to that of a semiconductor. The temperature dependent pre-exponential factor shows peak, and frequency exponent possesses a minimum at transition temperature.  相似文献   

9.
Abstract

We report measurements of gold circuits fabricated on four BaxSr1-xTiO3 ferroelectric films doped with 1% Mn grown on MgO substrates by laser ablation. Low frequency (1 MHz) measurements of σT and tanδ on interdigital capacitors are compared with high frequency measurements of phase shift and insertion loss on coupled microstrip phase shifters patterned onto the same films. The variation in temperature of both high and low frequency device parameters is compared. Annealed with amorphous buffer layer and unannealed films are compared. Room temperature figures of merit of phase shift per insertion loss of up to 58.4°/dB at 18 GHz and 400 V dc bias were measured.  相似文献   

10.
Abstract

To overcome the shortcomings (low-activity materials and the poor cycle stability) of lithium-sulfur (Li-S) batteries, rational design of cathode host materials is critical. Herein, we developed core-shell Co@NPC@TiO2 nanostructures, coating titanium dioxide (TiO2) on cobalt-doped nanoporous carbon (Co@NPC) derived from the thermal decomposition of zeolitic imidazolate framework-67 (ZIF-67) for sulfur electrodes. The synthesized Co@NPC@TiO2 has excellent electrical conductivity and strong restrictions on polysulfides, the sulfur cathodes with core-shell structure demonstrate a high initial discharge capacity of 1400 mAh g?1 at 0.1 C, compared with porous carbon, the electrical conductivity and cyclic stability are improved obviously.  相似文献   

11.
The impedance and electrical conductivity of Ba4Ti13O30 film prepared by laser chemical vapor deposition were investigated as functions of temperature (300–1073?K) and frequency (102–107?Hz). The impedance response was resolved into two contributions, which were associated with the grains (R g C g) and grain boundaries (R gb C gb). With increasing temperature, both R and C decreased. R gb was much higher than R g and C g were close to C gb. Below 876?K, a step-like behavior was observed in the ac conductivity plots as functions of frequency due to two dispersion regions. The low-frequency dispersion was associated with grain boundaries and the high-frequency one corresponded to grains. The activation energies of grain conduction (E g) and grain boundary conduction (E gb) were 0.20 and 1.49?eV, respectively, which indicated that the relaxation process in grains arose from hopping electron and that in grain boundaries from the diffusion of oxygen vacancies.  相似文献   

12.
The dc electrical conductivity and thermoelectric power of a-Ge20Se80 − x Bi x (x = 0, 4, 6, 8, 10, 12) thin films are reported in the present work. The thin films were deposited by flash evaporation at 10− 5 Torr pressure and were well-characterized taking XRD, XRF, DSC and EPMA measurements of the system. The dc conductivity was measured over a temperature range 77 to 476 K. Conduction type and activation energies of electrical conductivity have been determined. The electrical transport takes place via two modes extended state conduction at higher temperatures and variable range hopping at lower temperatures. The conductivity was found to change by few orders of magnitude with Bi doping and the electrical activation energies (Δ E σ) were found to decrease with increasing Bi content. The density of localized states and pre-exponential factor were determined. The thermopower measurements carried out using differential dc method in the temperature range 4.2 to 300 K and the activation energy (Δ E s ) for TEP determined. The change in band gap with increasing Bi content is due to increased band tailing and increase of Bi–Se bonds and decrease of Se–Se bonds thus leading to the modification of the network structure of Ge20Se80 system.  相似文献   

13.
Abstract

High dielectric constant Ba0.96Ca0.04Ti0.84Zr0.16O3 (BCTZ) thin films were deposited on Pt/Ti/SiO2/Si substrates by spin on metal-organic decomposition (MOD) technique. Undoped and 0.4% Mg-doped BCTZ thin films were annealed in the temperature range from 600 to 900 °C for 1 hour in oxygen environment. The crystal structure of BCTZ thin films was analyzed by X-ray diffraction. The electrical properties of BCTZ thin films were investigated by capacitance—voltage (C—V) characteristics. Also, the electrical properties of these films were compared in conjunction with 0.4% Mg doping effect of BCTZ thin films for possible high dielectric constant material applications.  相似文献   

14.
The electrochemical behavior of a symmetrical cell, Pt/Ce0.8Sm0.2O1.9?δ/Pt, under reducing conditions and wide temperature range (250 – 600 °C) is detailed. In terms of the charge carriers transport through the electrolyte microstructure, AC impedance spectroscopy has been applied to address useful concerns about the transport properties over electrolytic and mixed conduction regimes. The impedance spectra at lower temperature and oxygen partial pressure show the electrochemical response of separated bulk and grain boundary contributions. The increase in the electronic conductivity from 250 to 400 °C shows that the electrochemical reduction Ce4+/Ce3+ is as kinetic as thermodynamically favorable in the experimental conditions. In a typical Nyquist plot of an impedance diagram, until temperatures as low as 400 °C, the high and low frequency arcs can be accessed and the influence of reducing atmosphere over both the components is presented. The apparent activation energy for the electronic process (ΔE) extracted from the total conductivity is 2.54 eV. Distinguished bulk (2.34 eV) and grain boundary (2.63 eV) activation energies point the latter as an energetic barrier in the redox reaction. The oxygen partial pressure dependence of individual capacitances suggests storage of electrical charge along grain boundaries which can potentially behave as a chemical capacitor.  相似文献   

15.
Abstract

Sputtered Pb(ZrxTi1?x)O3 thin films with various (Zr/Ti) compositions ranging from 15/85 to 70/30 were grown and characterised in terms of structural and electrical properties. PZT thin films, with 0.7–0.8μm thickness, were deposited on Si/SiO2/Ti/Pt by sputtering followed by conventional annealing. The sputtering conditions were the same for all the compositions. There were no apparent differences in crystallographic orientation as a function of Zr/Ti and the films a-lattice constant evolution is not exactly identical to the one of bulk ceramics. The permittivity increases when the Zr concentration increases and decreases just after the mor-photropic composition i.e. Zr-rich films. The ferroelectric properties are very sensitive to the Zr/Ti ratio. For example, the coercive field increases when the Ti concentration in the film increases.  相似文献   

16.
Abstract

In this study, integration of an hydrogen barrier into a FeRAM process flow is investigated. It is reported in the literature that ferroelectric properties can be maintained after hydrogen annealing by using IrOx as a top electrode [16][17][18]. Advantage of materials like IrOx is less catalytic activity compared to Pt. However, we found that IrOx is not a promising candidate for top electrode barrier. (Pt)/IrOx/SBT/Pt capacitors are prone to shorting or exhibit high leakage. IrOx films are very easily reduced by reducing ambient which will result in peeling off. Also, IrOx films tend to oxidize Ti or TiN layers immediately. Therefore, other barrier materials or layer sequences like Ir/IrOx have to be considered.

For protection of the entire capacitor an Encapsulation Barrier Layer (EBL) is required. In this study, LPCVD SiN is used. LPCVD SiN is a standard material in CMOS technology. Production tools are available and it is well known as hydrogen barrier. By modifying the deposition process and using a novel process sequence, no visual damage of the capacitors after SiN-deposition and FGA is seen. Also, no degradation of electrical properties after capacitor formation as well as after SiN-deposition and FGA is observed. However, after metal 1 and metal 2 processing, 2Pr values at 1.8V are reduced from 12μC/cm2to 2μC/cm2. Polarization at 5.0V is not affected.  相似文献   

17.
Abstract

We have analyzed MgTiO3 thin films grown on the Si substrate with/without SiO2 using pulsed laser deposition (PLD). We find that MgTiO3 thin films start to crystallize at 600°C, causing electrical instabilities in the MIS capacitors above this temperature. Detailed analysis by XRD technique reveals that structural differences of MgTiO3 thin films were not obvious below 600°C, whereas the electrical characteristics changes as a function of deposition temperature and the presence of thermally grown SiO2. We observe that the decrease of deposition temperature results in the increase of leakage current and anomalous positive charge (APC) density. These drawbacks were effectively suppressed by growing 100A SiO2 layer on the Si substrate prior to the deposition of MgTiO3 thin films.  相似文献   

18.
The paper reports on synthesis, sintering and microstructure of Bi2/3Cu3Ti4O12, a lead-free, high-permittivity material with internal barrier layer capacitor behavior. Complex impedance and capacitance of the ceramic and thick films were studied as a function of frequency (10 Hz–2 MHz) and temperature (−170 to 400°C). Dc electrical conductivity of the samples was measured in the temperature range 20–400°C. Broad and high maxima of dielectric permittivity versus temperature plots were observed reaching 60,000 for ceramic and 5,000 for thick films. The maxima decrease and shift to higher temperatures with increasing frequency. Two arcs ascribed to grains and grain boundaries were found in the plots of imaginary part versus real part of impedance. Analysis of the impedance spectra indicates that Bi2/3Cu3Ti4O12 ceramic could be regarded as electrically heterogeneous system composed of semiconducting grains and less conducting grain boundaries. The developed thick film capacitors with dielectric layers based on Bi2/3Cu3Ti4O12 exhibit dense microstructure, good cooperation with Ag electrodes, high permittivity up to 5,000 and relatively low temperature coefficient of capacitance in the temperature range 100–300°C. Broad maxima in the dielectric permittivity versus temperature curves may be attributed to Maxwell–Wagner relaxation.  相似文献   

19.
Abstract

The dielectric and electrical properties of excimer laser ablated processed paraelectric (Ba0.5, Sr0.5)TiO3, ferroelectric Bi-layered SrBi2(Ta0.5Nb0.5)2O9, and antiferroelectric (PbZrO3) thin films have been investigated. The effect of processing parameters on the microstructure of the films and the functional properties has been presented in detail. Some of the recent studies of stress induced effects, dielectric, hysteresis and ac and dc electrical properties have been highlighted in conjunction with microstructures of the films.  相似文献   

20.
ABSTRACT

We report on the deposition of Pb(Zrx,Ti1 - x)O3 (PZT) thin films by chemical solution deposition (CSD) on stainless steel foils. The electrical characterization proves good ferroelectric properties with a remnant polarization of 38 μ C/cm2. Since PZT is also piezoelectric the 35 μ m and 50 μ m thick metal foils are used to make piezoelectric actuated cantilever beams of several millimeter lengths. Actuated with 10–30 V a displacement up to 32 μ m was measured in quasi-static mode. In resonance mode the displacement increases several times at the same driving voltage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号