首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
丁建军  黄星亮 《石油化工》2012,41(2):167-171
采用管式滴流床反应器,在反应压力1.5 MPa、反应温度313~333 K、液态空速15~30 h-1的范围内,对C5和C6烯烃在LNEH-1镍基催化剂上的异构反应进行了研究。实验结果表明,烯烃只发生双键异构和顺反异构,没有发生骨架异构;1-戊烯、3-甲基-1-丁烯、2-甲基-1-丁烯、1-己烯双键异构反应对烯烃浓度的反应级数均为1,异构反应表观活化能分别为27.60,42.24,79.62,27.71 kJ/mol;随烯烃碳数的增加,异构反应阻力增大,同碳数支链烯烃比直链烯烃更难异构化;由实验数据的拟合得到烯烃异构反应动力学方程,1-戊烯转化率的计算值与实验值的相对偏差基本在10%以内,烯烃异构反应动力学方程可用于反应过程模拟和反应器的设计。  相似文献   

2.
通过亚硝化、氧化两步法来制备2-硝基-1-萘酚,其中亚硝化反应是在氯化锌存在的条件下1-萘酚与亚硝酸发生反应生成2-亚硝基-1-萘酚.氧化反应则是以过氧化氢为氧化剂,在碱性条件下氧化2-亚硝基-1-萘酚而生成2-硝基-1-萘酚的反应.本研究通过在不同温度下改变氢氧化钠及过氧化氢的量以达到最优反应条件.  相似文献   

3.
ZSM35分子筛催化剂上1-己烯骨架异构化反应的研究   总被引:1,自引:0,他引:1  
在H2/1-己烯=8(分子比),p=0.2MPa,T=270℃,SV=1.0h-1的条件下比较了Si-ZSM12、Si-ZSM35、Si-Y、Si-SAPO114种分子筛催化剂的1-己烯骨架异构化反应性能,结果表明:弱酸中心可以满足1-己烯的骨架异构化催化过程;具有0.4~0.6nm孔径的分子筛是1-己烯进行骨架异构的前提条件,研究表明,对于1-己烯骨架异构化反应,在反应温度270℃,反应压力0.2~1.0MPa的反应条件下,Si-ZSM35分子筛催化剂具有独特的1-己烯骨架异构化性能。  相似文献   

4.
在固定床反应器内,将负载型Co-Rh/γ-Al2O3催化剂(简称催化剂)用于催化(R)-2-氨基-1-丁醇的消旋反应,系统地考察了反应压力、反应温度、(R)-2-氨基-1-丁醇水溶液的含量及进料流量对催化剂性能的影响,同时考察了催化剂的稳定性,并对反应机理进行了初步探讨。实验结果表明,所研制的催化剂具有很好的催化活性和选择性。在反应温度150℃、反应压力3.0 MPa、(R)-2-氨基-1-丁醇水溶液的质量分数20%、进料流量1.0 mL/min的条件下,(R)-2-氨基-1-丁醇的消旋率为100%,(R,S)-2-氨基-1-丁醇的回收率为89.6%。该催化剂具有良好的稳定性,经过30d的连续使用,催化剂仍具有良好的催化性能,未发现明显失活现象。(R)-2-氨基-1-丁醇消旋反应的机理为脱氢-加氢的反应机理。  相似文献   

5.
研究了MCM-22分子筛催化剂催化1-己烯异构化的反应性能。在n(H2)/n(1-hexene)=8的条件下考查了水处理温度、反应温度、反应压力对MCM-22分子筛催化剂上1-己烯骨架异构化产物的影响。研究表明:在水处理温度为500℃,反应温度270℃,1-己烯的质量空速1.0h-1,反应压力0.2MPa的条件下,MCM-22分子筛催化剂具有较高的1-己烯骨架异构化性能,骨架异构化产物(i-hexene)达到66.15%。与几种常用的分子筛催化剂相比,MCM-22分子筛催化剂具有更高的催化1-己烯异构化反应的性能。  相似文献   

6.
采用固定床反应器考察了1-己烯在反应温度为500~750℃范围内在H-ZSM-5沸石和石英砂上的裂化反应。在此基础上,建立了催化/热裂化占比模型,定量地讨论了高温下催化裂化和热裂化反应的关系。另外,根据1-己烯在H-ZSM-5沸石上裂化反应的产物分布,对其反应路径进行了推导和估算。结果表明:1-己烯在H-ZSM-5沸石上的高温反应以催化裂化为主。即使在750℃高温下,1-己烯通过催化裂化反应进行转化的占比仍然高达91.32%。产物中甲烷、乙烯和丙烯等主要来源于催化裂化反应,而不是热裂化反应。对1-己烯裂化反应路径的估算发现,双分子齐聚裂化反应占比由500℃时的74%下降到700℃时的0。单分子直接裂化反应有利于生成乙烯和丙烯等小分子烯烃,而双分子齐聚裂化反应有利于生成较大分子烯烃。高温下乙烯和丙烯产率较高的原因可能是高温促进了1-己烯的单分子直接裂化反应。  相似文献   

7.
以1-辛烯为原料,在HY、H 和HZSM-5分子筛上进行了催化裂解反应,结果表明,具有中孔结构和较多中强酸的ZSM-5分子筛具有较高的1-辛烯转化率和低碳烯烃选择性;1-辛烯在分子筛催化作用下除了发生裂解反应,还发生氢转移、环化等副反应。采用分子模拟技术对1-辛烯可能参与的不同类型反应进行了研究,发现HZSM-5分子筛孔径较小,且不含笼状结构,对1-辛烯的环化反应、氢转移反应等具有更强的过渡态约束作用,HY和Hβ分子筛由于孔径较大且具有笼状结构,对1-辛烯参与的不同反应选择性较差,从微观角度解释了1-辛烯在HZSM-5催化作用下具有较高转化率和小分子烯烃选择性的内在原因。  相似文献   

8.
利用Benson基团贡献法和ABWY法计算了丙烯二聚反应产物的标准生成焓、标准熵和摩尔定压热容,对298K~700K温度下丙烯二聚合成4-甲基-1-戊烯反应体系的反应热、吉布斯自由能以及反应平衡常数进行了详尽的计算,分析了不同反应步骤的热力学平衡与限度,对不同反应发生的热力学可能性与顺序进行了判断,考察了反应温度和压力对丙烯二聚反应化学平衡的影响,计算了特定工艺条件下丙烯二聚各反应的平衡转化率。结果表明:丙烯二聚反应是放热反应,低温时反应均能够自发地进行,且能够进行到较高的程度;从热力学上看,低温、高压有利于丙烯二聚合成4-甲基-1-戊烯反应的进行;除了生成1-己烯外,其它副反应均比生成4-甲基-1-戊烯反应更容易进行;丙烯二聚合成4-甲基-1-戊烯反应适宜的工艺条件为400K~450K,8MPa~15MPa,且在温度428K,压力10MPa下,丙烯二聚各反应的平衡转化率接近于100%。  相似文献   

9.
《精细石油化工》2017,(6):26-29
以2-氨基-5-氯苯甲酸为原料,通过溴化、重氮化及重氮盐转化反应得到3-溴-5-氯苯甲酸,反应总收率为41.7%。分别考察了反应时间、投料比及反应温度对溴化反应及重氮化反应的影响。溴化反应适宜的条件为:反应温度45℃,n(2-氨基-5氯-苯甲酸)∶n(N-溴代丁二酰亚胺)=1∶1,反应时间60min;重氮化反应适宜条件为:反应温度5℃,n(2-氨基-3-溴-5-氯苯甲酸)∶n(NaNO_2)为1∶1.2,保温时间30min。  相似文献   

10.
对1,2-二氯乙烷、氧气、氯化氢氧氯化制四氯乙烯反应体系进行了热力学分析,并通过实验考察了在Deacon反应催化剂的直接作用下,反应温度、反应空速、氧气及氯化氢与1,2-二氯乙烷间的物质的量比对反应结果的影响。热力学分析表明,生成四氯乙烯总反应为自发向右进行较完全的放热反应,适当降低温度有利于反应的进行。实验结果表明,较佳工艺条件为:反应温度410℃,空速0.54h~(-1),氯化氢、氧气和1,2-二氯乙烷三者的物质的量比2.76∶1.97∶1。在此条件下反应,1,2-二氯乙烷的转化率为99.20%,四氯乙烯的选择性可达到86.23%。  相似文献   

11.
以4,5-二氢-3-甲基-1-(4-氯-2-氟苯基)-1,2,4-三唑-5(1 H)酮的钾盐为原料,与一氯二氟甲烷进行N-烷基化反应合成了4,5-二氢-3-甲基-1-(4-氯-2-氟苯基)-4-二氟甲基-1,2,4-三唑-5(1 H)酮。研究了不同原料、碱性试剂用量、反应温度等因素对反应收率的影响,实验结果表明,最佳工艺条件为:n(钾盐)∶n(碳酸钾)=1∶2,m(钾盐)∶m(N-甲基吡咯烷酮)=1∶5,反应温度165℃,在此条件下,产物收率≥56%,质量分数≥95%。  相似文献   

12.
李岳  徐振凯  张凯旋  马海洪  陈勇强 《石油化工》2013,42(11):1247-1250
采用连续实验装置,以1-丁烯和合成气为原料、三苯基膦乙酰丙酮羰基铑为催化剂,经羰基合成反应制备了戊醛。考察了反应温度、反应压力、催化剂用量及合成气中H2与CO的配比对合成反应的影响。实验结果表明,提高反应温度、增加反应压力和催化剂用量可明显提高1-丁烯的转化率,反应压力和催化剂含量对戊醛选择性的影响较小;降低反应压力或提高合成气中H2分压,可显著提高产物中正戊醛的含量。在100℃、1.5 MPa、反应液中铑含量250μg/g、原料气中n(H2)∶n(CO)=1.92.0的条件下,1-丁烯转化率为85%2.0的条件下,1-丁烯转化率为85%90%,戊醛选择性在95%以上,产物中正戊醛与2-甲基丁醛的摩尔比为890%,戊醛选择性在95%以上,产物中正戊醛与2-甲基丁醛的摩尔比为811。  相似文献   

13.
以离子液体[Bmim]Br-AlCl3为催化剂,研究了反应温度、催化剂用量、反应压力及反应时间对1-丁烯齐聚液相产物分布的影响。结果表明,在反应温度为20-60℃,催化剂用量为1-4 g,反应压力为0.04-0.12 MPa,反应时间为1-3 h条件下,齐聚产物以三聚体、四聚体和五聚体为主,四聚体含量最多,二聚体含量最少,其质量分数小于10%。  相似文献   

14.
以蒽和1-十一烯烃为原料,HY型分子筛作催化剂,在微型高压釜中反应得到蒽的烷基化产物,通过单因素实验,考察了反应温度、反应压力、反应时间、催化剂添加量、物料配比对蒽烷基化反应的影响。结果表明:在反应温度为180 ℃,反应压力为3.0 MPa,HY型分子筛质量分数为5%,蒽/1-十一烯烃(摩尔比)为0.77的优化条件下,蒽的转化率达到85.08%。气相色谱-质谱联用和傅里叶变换红外光谱分析结果表明,多种烷基化蒽的选择性为48.93%,蒽与1-十一烯烃的反应为多种反应同时进行的复杂烷基化反应。  相似文献   

15.
以1-己烯、1-庚烯、1-辛烯、1-壬烯和1-癸烯为模型化合物,在小型固定流化床反应装置上进行催化裂化反应,研究了上述5种烯烃在不同反应温度、不同空速及不同分子筛催化剂(ZRP,Beta, REY,USY)作用下生成苯的规律,讨论分析了烯烃生成苯的反应路径以及反应条件对烯烃生成苯的影响。结果表明:C6链烯烃环化生成环烯烃,然后生成苯是烯烃转化为苯的主要反应路径;常规催化裂化条件下5种烯烃在USY分子筛催化剂上生成苯的产率较低,苯产率随温度的升高而增加,随空速的增大而降低;与在REY分子筛催化剂和USY分子筛催化剂上相比,1-癸烯在Beta分子筛催化剂和ZRP分子筛催化剂上催化裂化生成苯的产率更高。为了减少催化裂化产物中苯的生成量,在允许的条件范围内,应该尽量降低反应温度,增大空速,在孔径较大并且酸密度较低的催化剂上进行反应。  相似文献   

16.
在自行研制的气升式环流反应器中以3-羟基丁醛、氧气为原料,液相氧化合成3-羟基丁酸。从提高该反应的收率出发,通过正交实验设计,并对结果进行统计分析,找出了主要影响因素和最佳反应条件。主要影响因素为反应时间、溶剂用量和反应压力;最佳条件:反应时间5 h,反应压力1 MPa,溶剂乙酸乙酯与原料3-羟基丁醛的质量比1/1,进气量0.3 L/min,反应温度60℃,催化剂用量为3-羟基丁醛质量的0.5%,在该反应条件下3-羟基丁酸的平均收率达88.99%。  相似文献   

17.
以混合碳四为原料,采用碳四烯烃法可制备乙酸仲丁酯(sec-BA),并用Aspen plus软件模拟反应过程。结果表明,各反应的热负荷均为正值,即总反应为放热反应。在反应压力为0.80 MPa,反应温度为60℃,体积空速为2.5 h-1,乙酸/丁烯(摩尔比)为2.5的条件下,丁烯转化率达到最大值(85.1%)。sec-BA分别对1-丁烯、反式-2-丁烯和顺式-2-丁烯的选择性均大于1,说明合成反应不仅是单一反应,同时也是平行反应或连串反应。  相似文献   

18.
离子液体催化合成直链烷基苯   总被引:6,自引:0,他引:6  
以离子液体氯化甲基丁基咪唑一三氯化铁([bmim]Cl-FeCl3)作催化剂,催化苯与1-十二烯烷基化反应。考察了离子液体的酸度、离子液体用量、苯/1-十二烯摩尔比、反应温度和反应时间等条件对烷基化反应的影响。结果表明:酸性离子液体具有很高的催化活性和选择性,可以循环使用且活性基本没有降低。在离子液体的FeCl3/[bmim]Cl摩尔比2.0:1、1-十二烯0.02mol、FeCl3/1-十二烯摩尔比0.2:1、苯/1-十二烯摩尔比10:1、反应温度80℃、反应时间60min的条件下,1-十二烯转化率为100%,2-位异构体选择性为34.3%。  相似文献   

19.
在小型固定床反应器上,以添加1-己烯(质量分数为10%)的催化裂化汽油为原料,研究了S Zorb吸附脱硫过程中直链端烯烃的反应情况。结果表明:直链端烯烃在吸附脱硫过程中可以发生饱和、双键异构等反应,反应温度、氢油比、反应压力及空速等参数对1-己烯的转化、饱和以及双键异构化反应有着明显影响。高的反应温度、低的反应压力和氢油比促进端烯烃向内烯烃的双键异构化反应,如1-己烯发生双键异构化反应生成2-己烯和3-己烯。内烯烃具有更高的辛烷值以及更低的加氢饱和活性,因此端烯烃反应生成内烯烃的双键异构化反应使得S Zorb吸附脱硫过程中的辛烷值损失减小。  相似文献   

20.
《精细石油化工》2017,(3):36-39
在马来酸二甲酯加氢制备γ-丁内酯的反应过程中,采用铜-铝系氧化物催化剂替代铜-铬氧化物催化剂,去除了污染严重的铬。实验考察了反应温度、压力、氢酯比和液时空速等工艺条件对反应的影响,结果表明,适宜的反应条件为:反应温度225~232℃,压力0.5MPa,氢酯摩尔比(40~70)∶1,液时空速≤0.8h~(-1),在此条件下,反应转化率大于90%,γ-丁内酯选择性约90%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号