共查询到12条相似文献,搜索用时 0 毫秒
1.
通过激光熔化沉积工艺制备出TiCp(5wt% )/Ti60复合材料薄壁材料,分析了材料的显微组织及600℃下的拉伸性能.结果表明,TiCp/Ti60复合材料熔化析出的TiC相呈断续链状,均匀分布于基体中,TiC与钛合金基体的界面结合良好,但是TiCP,/Ti60复合材料中存在少量未完全熔化的TiC颗粒.采用同轴输送球磨混合粉末的工艺可以很好地解决未熔TiC颗粒的难题.TiCp/Ti60复合材料在600℃下的最大抗拉强度为775MPa.TiCp/Ti60复合材料在600℃下的断口特征比较复杂,既有沿晶断裂和准解理断裂也有局部的韧性断裂. 相似文献
2.
目的 提高激光熔化沉积铝合金的成形质量。方法 以颗粒度45~105 μm的AlSi10Mg粉末为材料,4045铝合金为基板,利用激光熔化沉积设备在充氩舱内进行铝合金成形试验。测试试样的硬度和拉伸性能,并通过扫描电子显微镜和光学显微镜进行显微组织形貌分析。结果 在沉积方向上,试样显微组织呈现周期性条带状纹路,搭接区域呈现出比较明显的弧形特征;含有大量的细密树枝晶。该合金相成分主要包括:Al相、共晶Si相及少量的Mg2Si强化相。沿扫描方向,试样平均硬度值约为130HV;沿沉积方向,试样平均硬度值约为100HV;沉积态试样的屈服强度约为185.75 MPa,伸长率约为15.21%;沉积态试样拉伸性能明显优于压铸试样;该铝合金的失效形式为韧性断裂。结论 AlSi10Mg在激光熔化沉积时具有良好的成形能力,沉积态的组织强度高于铸态组织强度。 相似文献
3.
4.
目的 研究钛合金-高熵合金梯度材料不同位置沉积层的微观组织形貌及力学性能演变规律。方法 采用激光熔化沉积的工艺制备了钛合金-高熵合金梯度材料,并建立了有限元仿真模型来辅助分析。研究对象为TA15基板上单道多层的梯度沉积层,在设计梯度材料成分时,相邻梯度的材料比例变化量为10%(质量分数),TA15钛合金的质量分数由100%逐渐降低至0%,AlNbTiVZr的质量分数逐渐增大。基于实验对有限元模型进行了一定程度的简化处理,通过热物性参数计算软件和经验公式获取了梯度成分材料的热物性参数,进行了单层单道激光熔化沉积实验以完成热源校核,在与实验相同的工艺参数下计算了温度场并进行了分析。结果 在一层一冷的冷却策略下,多层沉积仍存在一定的热累积现象,沉积15层后,沉积层中部的温度峰值基本保持在2 489 ℃,根据循环曲线,沉积层中部的重熔范围超过1/2。结论 随着高熵合金含量的增加,组织由细小等轴晶、胞状晶和柱状晶转变为多边形晶粒,V、Nb等β稳定元素的增加和Al等α稳定元素的减少抑制了组织中针状α相的形成,V、Nb等元素在晶界产生了明显偏析现象并逐渐增多,抑制了晶粒生长且增强了细晶强化作用,显微硬度随之增大。 相似文献
5.
目的 用激光熔化沉积法制备Co Cr Fe Ni Mn系高熵合金,以得出最优成型方案。方法 通过正交试验方法,以沉积层的显微硬度为评价指标,分析激光功率、激光扫描速度和送粉速度对沉积层成型质量的影响程度,并得出激光增材制造的最佳工艺组合。结果 当激光功率超过2 000 W时,沉积层表面开始出现烧蚀现象,沉积层表面出现波纹,熔池宽度不均匀;当激光扫描速度为5、7 mm/s时,沉积层相对较均匀,表面平坦;当送粉速度为0.7 r/min时,送入金属粉末的量的增加使沉积层体积增大,宽度变均匀。结论 最佳工艺参数为:激光功率P=2 000 W、扫描速度Vg=7mm/s、送粉速度Vf=0.7r/min。多道沉积时,搭接率为50%其成型性最优,制备得到的材料抗拉强度为453.7 MPa,伸长率为27.5%。 相似文献
6.
7.
8.
为提高316L不锈钢耐高温液态铅铋的腐蚀能力,通过使用同轴送粉的激光熔覆方式,在316L不锈钢表面制备一层Stellite6合金涂层,将其放入400℃的高温液态铅铋中进行500 h高速流腐蚀试验,其中相对流速设置为2.56 m/s.分析涂层的微观组织、物相组成、元素分布、显微硬度值等的变化规律,以及该涂层耐液态铅铋的腐蚀性能.涂层组织由等轴晶、树枝晶、胞状晶及平面晶组成,搭接区晶粒沿不同方向长大;涂层主要有γ-Co、CoCx、(Cr,Fe)7 C3及M23 C6等物相;各组分元素在涂层表面均匀分布,Co、Cr与Fe等元素在基体316L与涂层之间发生明显扩散;Stellite6涂层的硬度平均值为基体材料316L的2.3倍,且最高达到556.8HV.在进行高温液态铅铋高速流腐蚀后,316L不锈钢表面生成了大面积且连续的氧化物,存在大量微型腐蚀坑,Stellite6涂层表面仅存在少量氧化物,未发现明显的腐蚀坑,较好地维持了原貌;Stellite6涂层表面粗糙度值为1.0μm,而316L经腐蚀后的表面粗糙度为2.4μm.Stellite6合金涂层能够有效地提高316L不锈钢基体在高温液态铅铋合金中的耐腐蚀性能. 相似文献
9.
探讨了FeCrNiCoMoBSi高熵合金(HEA)激光熔覆涂层的微观结构以及激光功率对涂层物相和电化学腐蚀性能的影响。研究结果显示,HEA涂层由底部的柱状晶带、顶部的等轴晶带以及中间混晶带(由柱状晶和等轴晶混合组成)构成。采用3 000W功率制备的HEA涂层表现出最低的自腐蚀电流密度(0.425μA/cm2)、最高的自腐蚀电位(-0.16852V)以及最大的极化阻抗(69 616Ω),其阻抗模值■为1 143Ω·cm2,分别是1 800,2 500和4 500 W功率激光熔覆涂层的8.65倍、4.91倍和7.14倍,且其最大相位角为76.23°,均高于其它三种涂层。综合评估显示,采用3 000 W功率制备的HEA涂层具有出色的电化学腐蚀性能。这是由于其单一的FCC晶体结构、抗腐蚀的铁镍合金相和单质铬相、良好的晶体结晶度、细化的晶粒尺寸以及卓越的钝化效应,使其电化学腐蚀性能显著优于其他功率制备的涂层。 相似文献
10.
以纯Nb粉末、纯Si粉末或Nb_5Si_3粉末为原料,采用预置粉末法和双通道同轴送粉法,通过激光熔化沉积(LMD)技术制备3种Nb-16Si二元合金。使用SEM,EDS和XRD等手段分析合金的显微组织特征。结果表明:LMD制备的Nb-16Si合金均由NbSS和Nb_3Si两相组成。原料粉末的堆叠方式和化学状态强烈影响合金的显微组织。以纯元素粉末为原料,预置粉末法制备的Nb-16Si合金,由尺寸约1~5μm的枝晶状初生NbSS和NbSS/Nb_3Si共晶组织组成,合金显微硬度约773HV;双通道同轴送粉法促使显微组织细小均匀化,合金中初生NbSS相呈近等轴状均匀分布,平均尺寸仅约2μm,合金硬度提高至817HV;以Nb+Nb_5Si_3粉末为原料,双通道同轴送粉法制备的Nb-16Si合金呈伪共晶组织,其显微硬度高达907HV。 相似文献
11.
为了提高选区激光熔化AlSi10Mg合金在航空航天领域的应用,基于自主研发的原位SEM高温拉伸台,本文对比分析了原位拉伸非校准样品的选区激光熔化AlSi10Mg合金在室温、200、300 ℃条件下的力学性能与显微组织动态演化,并总结了断裂机理。结果表明,选区激光熔化AlSi10Mg合金的显微结构由α-Al基体、共晶Si和大量的气孔组成,且共晶Si呈连续网格状均匀分布在α-Al基体上。随着温度的升高,选区激光熔化AlSi10Mg合金的强度降低。屈服强度从室温的207 MPa降低到300 ℃时的52 MPa,极限抗拉强度从室温的304 MPa降低到300 ℃时的71 MPa,延伸率则随温度的升高而增大,从室温的7.4%增大到300 ℃时的59.5%。室温拉伸过程中试样并未出现明显的颈缩现象,而是随着温度的升高,试样的颈缩现象逐渐明显,表明试样经历了更加充分的塑性变形, 并且随着温度的升高,试样的断裂位置越来越偏离标距段中心。通过对试样变形行为的研究发现,200 ℃时,变形主要集中在晶内,发生晶内滑移;而300 ℃时滑移主要集中在晶界,导致晶界滑移。由于试样表面及内部存在大量缺陷,因此,室温下选区激光熔化AlSi10Mg合金的断裂机理为熔池边界的组织突变结合孔洞连通造成的准解理断裂。随着温度的升高,由于初始孔洞边缘的应力集中产生新的孔洞形核,新形核的孔洞与相邻孔洞相连通,导致试样的最终断裂。 相似文献