首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对复合材料低能冲击损伤机理研究不足的现状,应用复合材料层合板三维逐渐累积冲击损伤预测方法,对3种不同铺层顺序的T300/BMP-316层合板的低能冲击过程进行了详细分析,研究了其损伤在各层中的分布规律,并结合层合板的应力等值线图,分析了基体开裂及分层的损伤机理,研究认为基体开裂产生主要由垂直于纤维方向的拉应力达到一定值后,基体和纤维的形变不协调引起的;冲击背面附近和冲击正面附近的分层,分别是由基体开裂和相邻层的弯曲刚度不协调引起的。  相似文献   

2.
使用[0°/0°/0°]T、[45°/0°/45°]T两种铺层角度将碳纤维经面缎纹织物、碳纤维平纹织物预浸料、不同面密度芳纶纬编双轴向织物(MBWK)三种增强材料混杂铺层,制备出厚度为1.30 mm的复合材料头盔壳体用超薄层合板。测试分析了层板冲击后的压缩性能,用C扫描超声波检测仪测试了层合板冲击损伤图像,使用Image Pro Plus图像分析软件计算出不同冲击条件下的超薄层合板冲击损伤面积,研究了增强体结构类型、铺层角度对超薄复合材料层合板冲击后压缩性能的影响。结果表明,使用铺层角度为[45°/0°/45°]T的增强体结构可抑制层板沿纤维方向的冲击损伤裂纹的扩展,但是冲击点损伤破坏严重;纬编双轴向织物的面密度越大,则层板冲击后的凹坑深度越小。与其他铺层结构相比,当铺层角度为[0°/0°/0°]T时底层为碳纤维预浸料、中间层纬编双轴向织物面密度为630 g/m2、面层为碳纤维经面缎纹织物的复合材料超薄层板的冲击损伤面积与凹坑深度均最小,分别为225.28 mm2、0.16 mm,其剩余冲击后压缩强度达到最大值97.43 MPa,压缩强度保持率75.72%。这种结构,具有优异的冲击后压缩性能。  相似文献   

3.
采用加载臂开槽的中心开孔等厚度十字形试样,实验研究了正交对称铺层碳纤维增强聚合物基复合材料(CFRP)层合板在双轴拉伸载荷作用下的力学行为,分析了3种双轴加载比对其拉伸强度和破坏行为的影响。研究表明:纤维被切断的铺层部分在拉伸作用下容易与其相邻铺层脱粘,导致层合板承载力下降;等双轴加载时,在孔边的被切断纤维与连续纤维间基体在横向拉伸和纵向剪切组合作用下首先开裂;非等双轴加载时,在垂直于快速拉伸方向的铺层中沿孔边应力集中处先出现基体裂纹;随着加载比的增大,快速拉伸方向的细观结构损伤随载荷的增大发展更快,刚度下降更快,破坏时主裂纹的扩展方向更趋于垂直于快速拉伸方向;强度包络线的分析表明快速拉伸方向的拉伸强度随加载比的增大呈缓慢增大的趋势。   相似文献   

4.
复合材料层合板低速冲击损伤的有限元模拟   总被引:6,自引:2,他引:4       下载免费PDF全文
建立了用于预测复合材料层合板在低速冲击作用下损伤的3D有限元模型。采用应变描述的失效判据来判断铺层层内的各类损伤, 如纤维断裂、 纤维挤压、 基体开裂、 基体挤裂, 并结合相应的刚度折减方案对失效单元进行刚度折减。使用界面元模拟层间区域, 结合传统的应力失效判据和断裂力学中的能量释放率准则来定义分层损伤的起始和演化规律, 提出了一种界面元损伤起始强度沿厚度方向的分布函数。通过对数值仿真结果和实验结果的比较, 验证了模型的合理性和准确性。   相似文献   

5.
综述了连续纤维增强聚合物基复合材料的低速冲击响应研究进展。讨论了测试方法及相关影响参数,例如冲头的形状、冲击速率对复合材料冲击的影响;介绍了冲击损伤的类型,进一步描述了层压板结构参数(如层合板厚度,铺层和缝纫)、复合材料组分材料性能(如纤维,树脂和纤维/树脂界面)以及预应力、环境条件等的影响;提出了纤维增强聚合物基复合材料冲击响应研究今后的发展方向。  相似文献   

6.
为了研究新型纤维增强镁合金混杂层合板在低速冲击下的力学响应,分别对由玻璃纤维、碳纤维和二者混杂增强的AZ31B镁合金层合板在不同冲击能量下的落锤低速冲击试验进行了数值模拟。基于镁合金各向异性塑性本构和指数关系界面脱粘内聚力本构模型,同时纤维复合材料层采用三维Hashin失效准则且引入刚度折减,编写了复合材料层板损伤的VUMAT子程序,并将该子程序嵌入ABAQUS/Explicit中实现对层合板冲击过程的模拟。研究了该纤维层合板在不同冲击能量下的动态冲击响应以及脱粘与损伤演化规律,分析了冲击载荷、形变和能量吸收随时间的变化规律。模拟结果表明:在冲击能较小时,首先在冲击背面出现基体开裂,随着冲击能的增加,层合板受冲击面出现由无明显损伤到出现基体开裂和纤维断裂的现象;与单一碳纤维增强的镁合金层合板复合材料相比,单一玻璃纤维增强的镁合金层合板在冲击载荷作用时能够吸收更多的能量,碳纤维层内混杂合适的玻璃纤维铺层能够提高碳纤维增强镁合金层合板的抗冲击性能。  相似文献   

7.
通过对玻纤增强环氧乙烯基酯树脂(GF/EVE)和玻璃纤维增强不饱和聚酯树脂(GF/UP)复合材料的多轴向铺层设计试件进行低速冲击、弯曲和剪切破坏性力学试验,分析了不同铺层方式的GF/EVE和GF/UP复合材料冲击、弯曲和剪切载荷作用下产生的损伤及失效模式。结果表明:在铺层设计与工艺相同的情况下,CF/EVE的弯曲强度、冲击韧性均优于CF/UP;[0,90]6试件冲击能量吸收性能优于其他五种铺层方式;铺设角设计、树脂基体类型、铺层厚度对层合板剪切力学性能的影响较小。并基于SEM与超声C扫描成像检测(C-SAM)对复合材料的微观界面脱粘机制及损伤演化行为进行阐释。  相似文献   

8.
刘洋  庄蔚敏 《复合材料学报》2021,38(11):3563-3577
为研究传统自冲铆(SPR)工艺连接碳纤维增强树脂复合材料(CFRP)和铝合金的损伤问题,制备三种典型铺层结构的自冲铆接头,研究铺层结构对接头表面宏观损伤形貌的影响。在不同测试温度下对CFRP进行力学试验,研究温度对CFRP力学性能及失效的影响。基于CFRP的温热力学性能,以减小接头损伤为目的,创新性提出了CFRP和铝合金的温热自冲铆接(WSPR)工艺,对比了两种铆接工艺获得接头中CFRP的损伤差异。制备CFRP和铝合金的WSPR接头,研究铺层角度对接头力学性能和失效过程的影响。研究表明:常温下铆接时,钉头附近区域易出现宏观裂纹缺陷,主要以平行于纤维方向的基体裂纹和垂直于纤维方向的纤维裂纹形式存在。在树脂基体的玻璃化转变温度下,CFRP在横向和剪切方向的延展性大幅度提高,导致WSPR接头的CFRP表面无宏观裂纹,同时减小了分层损伤面积。铺层角度影响接头的拉剪力学性能及失效过程,[0/90/0]s铺层接头的力学性能最优。   相似文献   

9.
研究了不同层数超高分子量聚乙烯(UHMWPE)纤维/环氧树脂纬平针织复合材料的冲击性能,并讨论了其冲击损伤模式。复合材料板分别为4、6、8层纬平针织结构,采用真空辅助树脂传递模塑(VARTM)工艺层合而成,以不同的冲击能量(10~55J)冲击复合材料板直至层合板被穿透,得到冲击能量与吸收能量关系图以及接触力-挠度曲线。分析了不同冲击能量下,复合材料中织物的损伤形式和破坏过程。研究结果表明:在3种针织结构复合材料中,8层纬平针织结构承受载荷的能力最强,6层纬平针织结构次之,4层纬平针织结构最差;随着冲击能量的增加,3种试样的冲击挠度均增大;基体开裂、纤维断裂是试样被渗透时有效的损伤模式,基体和纤维断裂是试样被穿孔时有效的损伤模式。  相似文献   

10.
采用碳纤维和芳纶纤维增强复合材料对波纹夹芯结构的面板进行层间混杂铺层设计,通过真空辅助树脂灌注(VARI)成型工艺制备混杂波纹夹芯结构。在60 J、80 J和100 J三种不同冲击能量下,研究了面板混杂铺层方式对波纹夹芯结构低速冲击性能及冲击后压缩强度的影响,并利用超声C扫和工业CT断层成像两种无损检测技术对波纹夹芯结构的冲击损伤机制进行了分析。结果表明:冲击能量较低时,波纹夹芯结构的吸收能量基本不受面板的混杂铺层方式影响,而凹坑深度随表层碳纤维层数增加而减少。冲击能量较高时,面板为分层式混杂(碳/芳纶纤维单层交替铺层)的波纹夹芯结构的抗冲击性能最好,纤维断裂损伤和层间分层主要发生在试样表层,但损伤面积较大;面板为夹层式混杂(以碳纤维为蒙皮、芳纶纤维为芯材)的波纹夹芯结构具有较高的吸收能量,整个上面板的纤维都发生了断裂破坏,但损伤面积较小。碳/芳纶混杂波纹夹芯结构的面板采用分层式和夹层式的混杂铺层设计时,具有较高的冲击后压缩强度。  相似文献   

11.
不同形状弹体高速冲击下复合材料层板损伤分析   总被引:1,自引:0,他引:1  
古兴瑾  许希武 《工程力学》2013,30(1):432-440
根据纤维增强复合材料宏细观结构,基于纤维的线弹性假设和基体的粘弹性假设,推导了单向复合材料粘弹性损伤本构关系。在此基础上,结合Hashin失效准则进行单层板面内损伤识别,通过界面单元模拟层间分层损伤,采用非线性有限元方法,建立了复合材料层板高速冲击损伤有限元分析模型。利用该模型,深入研究了不同形状弹体高速冲击下复合材料层板的弹道性能和损伤特性,探讨了相关参数对冲击损伤的影响规律,获得了一些有价值的结论。  相似文献   

12.
建立了有效的复合材料层合板结构冲击损伤分析方法,层合板面内损伤采用改进的Chang/Chang 失效准则做判据,得到面内各类损伤形式。层间损伤采用与Mixed-Mode粘接元等效的TIEBREAK接触模拟。利用此分析方法,从复合材料薄壁结构设计需要出发,研究了在低能量冲击下,铺层的层间角度、铺层方向、铺层重叠对层合板结构冲击损伤阻抗的影响规律,并对它们的综合影响进行了总体分析,得到了能提高层合板结构损伤阻抗的铺层顺序设计指导。最后用该设计指导对某种铺层结构进行了重新设计和有限元模拟,验证了该设计指导的可行性和有效性。  相似文献   

13.
目的 为掌握碳纤维复合材料板在低速冲击载荷作用下的损伤规律,延缓失效破坏,对其冲击损伤的应力状态进行研究。方法 基于ABAQUS平台,建立碳纤维复合材料层合板低速冲击有限元模型,采用Hashin失效准则和VUMAT用户子程序,对碳纤维复合材料层合板的冲击过程进行数值模拟,同时考虑层合板层内与层间失效,以此来研究低速冲击条件下复合材料的损伤机理,分析冲击损伤过程中的应力变化趋势,讨论应力的分布状态。重点研究铺层角度及铺层距离冲头远近对应力的影响。结果 不同角度铺层的应力传播轨迹均沿着纤维方向和垂直于纤维方向同时扩展,应力均先增加至极限值而后迅速下降;铺层角度越大,板料的承载能力越弱,0°铺层的极限应力为1 432 MPa,而90°铺层的极限应力降至1 206 MPa;离冲头越远的铺层应力越小,达到峰值的时间更早且率先下降,说明远离冲头的铺层更早发生失效。结论 揭示了碳纤维层合板在低速冲击载荷作用下的应力状态及其对损伤的影响规律,能够为复合材料层合板零件设计提供参考。  相似文献   

14.
混杂复合材料是两种或两种以上不同基体或增强材料组成的复合材料。混杂复合材料因选用了不同的材料,在性能上常有互补性。通过研究典型基体材料和典型增强材料组成的混杂复合材料,和混杂复合材料的非对称铺层特性,形成混杂复合材料非对称铺层制件。在单一材料性能基础上,主要研究典型混杂复合材料的性能,混杂复合材料非对称铺层结构的性能。  相似文献   

15.
低速冲击下复合材料层合板损伤分析   总被引:6,自引:0,他引:6  
根据低速冲击下复合材料层合板的分层损伤机理,发展了一种分层失效准则,该准则同时考虑了层间拉应力、层间剪应力和基体开裂等因素对分层损伤的影响,并在损伤分析中,区分了冲击正面由挤压应力引起的纤维挤压损伤和冲击背面由弯曲拉应力引起的纤维断裂损伤,模拟了纤维断裂、纤维挤压、基体开裂、基体挤压、分层等五种损伤的起始和扩展过程,完善了作者以前发展了低速冲击逐渐累积损伤模型.通过与实验结果进行比较,验证了模型的合理性.  相似文献   

16.
基于三维逐渐损伤理论和有限元法,对碳纤维复合材料假脚的冲击及冲击后疲劳破坏过程进行分析,研究了不同的复合材料体系、几何尺寸、纤维铺设方式等工艺参数对碳纤维假脚的冲击损伤及疲劳性能的影响规律。结果表明,在冲击载荷作用下,碳纤维复合材料假脚的损伤模式主要为基体开裂、纤维压缩和分层;复合材料体系的横向和法向拉伸强度以及剪切强度等参数越小,假脚的冲击损伤面积越大,所能承受的疲劳循环次数越低;随着后龙骨厚度的增加,基体开裂损伤面积越来越大,分层损伤面积略有减小,而纤维压缩损伤几乎没有变化。尽管随着后龙骨厚度的增加,假脚的疲劳循环次数逐渐增大,但是相对于厚度的增加量,疲劳循环次数的增加量相对较小;不同铺层参数对碳纤维复合材料假脚的冲击损伤模式几乎没有影响。适度增加0°铺层的含量,可有效提高碳纤维复合材料假脚的疲劳性能。  相似文献   

17.
史永胜  孙文泽 《包装工程》2023,44(1):300-308
目的 对无伞空投箱所用的碳纤维、玻璃纤维、芳纶纤维/环氧树脂体系纤维混杂铺层的复合材料层合板进行研究,以在低成本下提高实现效果。方法 复合材料层合板分为10层,采用层间混杂结构,通过改变混杂比、铺层角度及铺层顺序,设计148种铺层方案,利用ANSYS–APDL软件分析3种参数变量对层合板拉伸性能及抗弯性能的影响。结果 沿主要受力方向铺设纤维,碳纤维层在外侧、玻璃纤维层集中在中心,且玻璃纤维层体积分数为40%时,材料具有最高的性价比。结论 针对混杂纤维复合材料层合板,通过调整混杂比得出碳/玻璃混杂纤维复合材料性能较好,通过调整铺层角度得出纤维铺设角度越接近受力方向其性能效果越好,通过调整铺层顺序得出不同混杂比、铺层角度下的最佳性能结构。  相似文献   

18.
针对传统内聚力损伤模型(CZM)无法考虑层内裂纹对界面分层影响的缺点,提出了一种改进的适用于复合材料层合板低速冲击损伤模拟的CZM。通过对界面单元内聚力本构模型中的损伤起始准则进行修正,考虑了界面层相邻铺层内基体、纤维的损伤状态及应力分布对层间强度和分层扩展的影响。基于ABAQUS用户子程序VUMAT,结合本文模型及层合板失效判据,建立了模拟复合材料层合板在低速冲击作用下的渐进损伤过程的有限元模型,计算了不同铺层角度和材料属性的层合板在低速冲击作用下的损伤状态。通过数值模拟与试验结果的对比,验证了本文方法的精度及合理性。  相似文献   

19.
基于“离位”技术,分别开发两种新型聚醚砜(PES)点阵附载型(ES-L)和PES无规附载U3160织物型(ES-R)ES^TM-fabric织物,采用RTM工艺制备ES^TM-fabric织物增强3266中温环氧树脂基复合材料(ES^TM-fabric/3266),对其进行冲击阻抗及冲击后压缩测试,并利用荧光显微镜、SEM结果分析离位增韧机理,还对比研究未增韧U3160织物增强3266中温环氧树脂基复合材料的性能。低速冲击测试结果表明:相比未增韧U3160/3266(ES-U),ES^TM-fabric/3266的起始损伤阈值载荷显著提高,冲击损伤面积明显减少,裂纹扩展更加平缓,且以层内基体裂纹、纤维束内的纤维-基体脱粘和局部铺层断裂为主。ES-L的CAI值比ES-U增大了37%。ES-R层间出现均布式相反转结构,ES-L层间存在硬相区(富BMI连续相)和软相区(富PES连续相/3266相反转结构);ES-L的相结构能够更加有效地缓解应力集中、耗散冲击能量,从而使其表现出最佳的损伤阻抗和损伤容限性能。  相似文献   

20.
将二维编织结构简化为(0°/90°)s正交铺层结构。采用含损伤变量的剪滞分析理论,解得双向等轴拉伸载荷下,0°层和90°层开裂后各层的应力分布;基于随机基体裂纹演化理论,随机纤维损伤和最终失效理论,确定了0°层和90°层沿纤维方向的应力-应变关系,以及切线拉伸模量与施加载荷之间的关系;然后,将切线拉伸模量代入正交铺层结构的剪滞分析中,进而预测出二维编织陶瓷基复合材料在双向等轴拉伸载荷下的应力-应变关系。预测结果表明:在双向等轴拉伸载荷下,二维编织陶瓷基复合材料的横向和纵向应力-应变曲线基本相同,与单向加载时的应力-应变曲线相近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号