首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用自主设计的微层共挤出设备,制备了具有交替微层结构的炭黑填充聚丙烯/聚丙烯(PPCB/PP)导电复合材料。PPCB层和PP层均为连续相,炭黑仅选择性分散在PPCB层内,形成一种特殊的双逾渗现象。电性能测试表明,微层共挤出技术可显著降低微层PPCB/PP复合材料的逾渗阈值和电阻率,其导电性能与材料层数相关。此外,微层共挤出方法能明显改善材料的韧性。  相似文献   

2.
利用自主设计的微层共挤出设备,制备了具有交替微层结构的炭黑填充聚丙烯/聚丙烯(PPCB/PP)导电复合材料。PPCB层和PP层均为连续相,炭黑仅选择性分散在PPCB层内,形成一种特殊的双逾渗现象。电性能测试表明,微层共挤出技术可显著降低微层PPCB/PP复合材料的逾渗阈值和电阻率,其导电性能与材料层数相关。此外,微层共挤出方法能明显改善材料的韧性。  相似文献   

3.
本研究通过溶液-熔融共混的方法制备了不同导电填料含量的聚丙烯/碳纳米管(PP/MWCNTs)导电复合材料,通过DSC、SEM和自组装电阻仪详细地研究了PP/MWCNTs导电复合材料的结晶性能与导电性能的关系及其在外场作用下的响应行为.通过溶液-机械共混方式制备的PP/MWCNTs导电复合材料具有较低的导电填料逾渗阈值,约为2.1%(质量分数,下同),并且随着导电填料含量的增加,聚丙烯的导电性能、热力学稳定性和结晶性能显著提高,热力学分解温度从410.1℃提高到了435.2℃.通过分析PP/MWCNTs导电复合材料在单次循环的温度-电阻响应的数据发现,PP/MWCNTs导电复合材料在25~180℃内一直表现为正温度效应(PTC),且最大和最小电阻值基本上未发生明显变化,具有较好的单调性.在多次温度循环实验(25~145℃)过程中,复合材料的电阻率表现出良好的重复性和稳定性.此外,对恒温-电阻响应行为数据进行分析发现,导电网络随时间的变化出现破坏与重组的现象,晶体排斥效应起到了主要作用.随着恒温温度的升高,导电网络的重组时间逐渐延长,从大约5 min延长到了15 min.  相似文献   

4.
利用多层共挤出技术制备了具有规整的交替层状结构的聚丙烯/聚丙烯-石墨烯(PP/PP-GR)交替多层复合材料,通过光学显微镜、扫描电子显微镜、气体渗透实验、力学性能测试研究了PP/PP-GR交替多层复合材料的结构与性能的关系。结果表明,分层叠加单元对复合材料施加的使熔体变宽变薄的"类双向拉伸"作用促进了石墨烯在PP中的分散、剥离和取向,从而使PP/PP-GR交替多层复合材料在低GR含量(体积分数0.082%)下同时具有高气体阻隔性(氧气渗透系数为1.01×10~(-15) cm~3·cm/(cm~2·s·Pa))和高断裂伸长率(1080.1%)。  相似文献   

5.
以多壁碳纳米管(MWCNTs)及石墨烯(GNS)为填料,超高分子量聚乙烯(UHMWPE)为基体,采用溶液共混及模压工艺制备了具有隔离结构的混合填充导电复合材料。扫描电镜(SEM)和电阻率测试发现,MWCNTs、GNS形成的导电通路相互协作,填料的含量比对复合材料导电网络有明显的影响。复合材料的阻温特性曲线随填料含量比的变化而发生改变,当MWCNTs含量较高时(MWCNTs:GNS=3:1和1:1),复合材料的电阻率随温度升高而升高,在之后的降温过程中电阻率也逐渐升高;当GNS含量较高时(MWCNTs:GNS=1:3),复合材料的电阻率随温度升高而降低,降温过程中电阻率逐渐升高;经过热循环后复合材料的导电性能降低,此时复合材料中的隔离结构被破坏。  相似文献   

6.
为研究多壁碳纳米管(MWCNTs)和热塑性弹性对MWCNTs-聚氨酯/聚丙烯(MWCNTs-TPU/PP)复合材料结晶性能、导电性能、拉伸性能及外场响应行为,通过溶液-熔融法制备了MWCNTs-TPU/PP复合材料。MWCNTs的引入能够提高MWCNTs-TPU/PP复合材料的导电性能和结晶性能,导电逾渗值质量分数约为1.9wt%,开始结晶温度从117.5℃提高到131.2℃。通过电阻仪和温控装置的联用在线表征了在不同热处理温度下导电网络的构建和破坏过程,随着热处理温度从110℃提高到175℃,MWCNTs-TPU/PP复合材料的导电性能和结晶度得到改善;TPU的引入能够显著降低MWCNTs-TPU/PP复合材料对温度的反应时间从约10 min缩短到约3 min,温度响应行为得到显著改善。通过拉伸数据分析表明,MWCNTs含量的增加能够提高MWCNTs-TPU/PP复合材料的拉伸强度和断裂伸长率,MWCNTs添加量为2.5wt%时,复合材料的拉伸强度从~35 MPa提高到~47 MPa;应变-电阻数据表明,TPU的引入能够改善MWCNTs-TPU/PP复合材料在循环拉伸过程中应变的可回复性和导电网络结构的稳定性。   相似文献   

7.
通过熔融共混制备了石墨烯纳米片(GNS)/聚丙烯(PP)/高密度聚乙烯(HDPE)导电复合材料。导电行为研究表明,静态热场下复合材料的电阻率随时间延长而下降,并逐渐达到稳定。动态剪切热场作用下,复合材料的电阻率先下降后上升,当180℃剪切8min时,GNS的体积分数为3.4%的50%PP/50%HDPE混合体系电阻率从104Ω·m降低到100Ω·m,下降了4个数量级。剪切时间延长到18min时,其电阻率又升至103Ω·m。超景深显微镜、扫描电子显微镜分析显示,热场作用下GNS从PP基体中向HDPE基体内迁移,且热场+剪切场下的迁移更加明显。通过调控剪切热场的作用时间可有效调节GNS在PP/HDPE双连续相中的分布,进而获得具有较优导电性能的复合材料。  相似文献   

8.
具有导电各向异性的高分子复合材料(ACPCs)在场发射装置及传感器设计领域具有重要应用。常规的ACPCs很难获得超大导电各向异性系数,且力学性能有限。本文采用碳纤维(CF)宽展、表面浸润与树脂复合一体化超薄热塑性单向带制备方法,制备厚度为0.04 mm和0.1 mm的CF增强聚醚醚酮(CF/PEEK)复合材料单向带,以PEEK纤维为纬线制备CF/PEEK复合材料单向编织布,采用热成型工艺制备CF/PEEK复合材料单向层合板。利用数字万用表和霍尔效应系统测试层合板面内及厚度方向的电阻率和面内的电子迁移率;采用超景深显微镜观察CF/PEEK复合材料单向层合板面内和厚度方向的纤维排列形貌。结果表明,超薄CF/PEEK复合材料单向层合板面内(纤维方向与横向)导电率之比高达377,而面内横向和厚度方向的导电率之比接近1,表明CF/PEEK复合材料获得了良好的横观各向同性;超薄化CF/PEEK复合材料的面内电子迁移行为同样具有巨大的各向异性,这一结果为CF/PEEK复合材料在场发射器件、传感器设计及其灵敏度调控方面提供了实验基础。   相似文献   

9.
以2种不同形态尺寸的导电填料炭黑(CB)、 碳纤维(CF)填充双组分聚合物体系高密度聚乙烯(HDPE)聚丙烯(PP), 制备了四元导电复合材料。研究了导电网络的结构形态及其对材料阻温特性的影响。光学显微镜及SEM 观察表明: 炭黑选择性地分布于HDPE中, 体系中HDPE与PP呈双连续相分布, 形成双渗流导电网络结构。而具有较高长径比的碳纤维在两相基体中均匀分布并贯通多个相区, HDPE导电相区的碳纤维相互桥接形成导电网络。电性能测试结果表明: 体系的体积电阻率与CB/HDPEPP及CBCF/HDPE三元复合体系相比下降了1~5个数量级。同时, 双渗流导电网络的存在也有效抑制了负温度系数(NTC)效应, 提高了循环稳定性。与CBCF/HDPE体系相比, CBCF/HDPEPP体系的NTC效应从2个数量级下降到0.6个数量级, 电阻特征弛豫时间从951s增加到了2370s。   相似文献   

10.
研究了高比表面积炭黑(Ketjen black, KB)填充聚丙烯复合材料(KB/PP)的导电性能及体积电阻率-温度特性。结果表明, 当KB填充含量达到0.5%~1.5%(体积分数)时, KB/PP复合材料出现电渗流行为, 表现出优异的室温导电性能。同时, KB/PP复合材料的体积电阻率-温度特性曲线呈现出特殊的负温度系数-正温度系数-负温度系数(NTC-PTC-NTC)三阶段特征, 体积电阻率随温度的上升, 先出现下降产生第一个NTC效应, 然后出现PTC效应及第二个NTC效应。在相对低温范围内, 第一个NTC效应具有良好的稳定性和重复性。KB表面的电子跃迁导电、基体体积膨胀两种效应的叠加是造成KB/PP复合材料出现三阶段特征的原因。  相似文献   

11.
采用动态硫化方法制备了多壁碳纳米管/热塑性硫化胶(MWCNTs/TPV)复合材料,研究了三种动态硫化工艺和MWCNTs用量对MWC-NTs/TPV复合材料的相态结构、介电、导热和物理性能的影响.MWCNTs/TPV复合材料呈现"海岛"结构,IIR橡胶相以微米级交联颗粒分散在PP相中.动态硫化工艺主要影响MWCNTs的分布,MWCNTs在两相中均匀分布的MWCNTs/TPV复合材料具有较高的热电性能.当MWC-NTs含量达到渗流阈值(3%(质量分数,下同))时,形成MWCNTs网络结构,MWCNTs/TPV复合材料的交流电导率、介电常数和热导率急剧增加.随着MWCNTs含量的增加,MWCNTs/TPV复合材料的弹性模量逐渐增大,拉伸强度先增大后减小;MWCNTs能够提高TPV基体的界面结合力,与纯TPV相比,当MWCNTs的含量为3%时,MWCNTs/TPV复合材料的拉伸强度提高39%.基于MWCNTs/TPV复合材料的相态结构以及MWCNTs的渗流阈值提出MWCNTs网络结构,分散在PP基体中和两相界面处的MWCNTs相互搭接形成MWCNTs网络结构.  相似文献   

12.
以经处理过的多壁碳纳米管(MW-CNTs)为导热导电填料、三元乙丙橡胶(EPDM)为基体,采用机械共混法制备了MW-CNTs/EPDM复合材料。研究了碳纳米管填料在低填充量(6%)下对复合材料体积电阻率、热导率、热稳定性及力学性能的影响,并通过扫描电镜观察分析MW-CNTs在复合材料中的分布。结果表明:处理后的MWCNTs在EPDM基质中能形成良好的聚合物填料界面,分散均匀,形成有效的导电导热网链。复合材料的体积电阻率随着MW-CNTs填充量的增加而呈数量级的递减,导热系数随之增加,热稳定性提高,填充后的复合材料具有较好的物理机械性能。  相似文献   

13.
用熔融共混法制备了低密度聚乙烯(LDPE)/乙烯-醋酸乙烯共聚物(EVA)/多壁碳纳米管(MWCNTs)/碳纤维(CF)复合材料。使用高阻计、扫描电子显微镜、旋转流变仪等研究了导电填料及基体组成对材料的电性能和流变性能的影响。发现MWCNTs与CF共同作为导电填料具有协效作用,使得材料其不仅具有渗滤阈值低的特点,并且当填料含量超过阈值时,材料的导电性能相比于纯MWCNTs填充的复合材料电阻率降低了2个数量级。流变测试发现MWCNTS相比于CF对基体分子链运动的限制更为明显,MWCNTs含量的增多会增加材料的黏度并使材料从"类液"的粘弹行为转变为"类固"的粘弹行为。  相似文献   

14.
通过共溶剂法制备了由石墨(GN)和多壁碳纳米管(MWCNTs)掺杂的聚乳酸(PLA)纳米复合材料,借助扫描电镜等手段,研究了MWCNTs用量对复合材料微观结构、热稳定性、导热和导热性能及介电性能的影响。结果显示,MWC-NTs和GN在PLA基体中形成了稳定的导电和导热网络结构,从而导致复合材料具有较低的导电和导热逾渗阈值,其值约为MWCNTs/GN=0.5/1。MWCNTs和GN均匀分散和协同增强效应促使复合材料热稳定性、导热和导电性能明显提高。与纯PLA相比,填料在逾渗阈值附近的复合材料的初始分解温度提高了近16℃,导热系数提高了1倍,体积电阻降低了109数量级。  相似文献   

15.
利用微层共挤出技术制备了不同层数的热塑性聚氨酯(TPU)和碳纳米管(CNT)填充TPU交替多层复合材料,分别研究了层结构和退火处理对复合体系导电性能的影响。结果显示,在相同粒子填充量下(4%)、低层数(低于64层)样品的体积电阻率均小于TPU/CNT普通共混样,说明导电粒子在聚合物基体中的选择性多层分布更有利于相互搭接形成导电通路。但是,随着层数的增加,层叠作用逐渐破坏导电层中原本连续的粒子网络。当层数达到128层时,电阻率超过共混体系。对多层样品分别在40℃、60℃和80℃下退火1 h,层数高的样品电阻的下降幅度更大,且退火温度越高,趋势越显著。分析认为,在高温下聚合物分子链更容易发生松弛回复,提高了导电粒子在基体中的搭接几率,使导电网络更易实现重构,这为多层体系电学相关性能的改善提供了新的途径。  相似文献   

16.
炭黑(CB)、石墨(C)、炭纤维(CF)炭系与基体树脂以特殊的工艺复合改性制得体积电阻率小于0.1Ω.cm的高导电高分子复合材料。研究了不同的复合体系(CB/PP)/SEBS、(PP/SEBS)/CB、(CB/SEBS)/PP及不同的配方与工艺获得的复合材料对导电性能的影响,结果表明,(PP/SEBS)/CB复合体系是最佳加工方式。采用扫描电镜(SEM)、力学性能测试等方法研究了炭系导电材料在PP/SEBS树脂中的分散机理及复合材料的力学性能。实验结果表明炭系复合组分含量为60%的PP/SEBS导电复合材料具有超高电导率、优良的力学性能和加工性能。  相似文献   

17.
通过超声法将炭黑(CB)粒子固定在静电纺丝尼龙6(PA6)纤维膜表面,制备出一系列具有不同CB含量的CB/PA6导电纤维薄膜。利用热压成型法将制备的导电纤维膜与高密度聚乙烯(HDPE)粉末热压复合,制备出CB/PA6/HDPE导电高分子复合材料(CPC)。扫描电子显微镜图片显示,CB粒子均匀地锚固在PA6纤维表面,且CB/PA6导电纤维膜在HDPE基体中形成连续的导电网络结构。研究了材料的导电逾渗行为,发现CB/PA6/HDPE复合材料的逾渗值仅为2.5%,显著低于传统的CB/HDPE复合材料的逾渗值(8.5%)。同时,由于CB/PA6/HDPE复合材料具有特殊的预制CB/PA6导电纤维网络状结构,PA6电纺纤维膜的含量在复合材料体系中也呈现出有趣的逾渗行为。  相似文献   

18.
通过微纳层状共挤出技术制备了聚丙烯(PP)和PP/POE交替多层共混物。通过扫描电镜、差示扫描量热分析、动态力学分析以及力学性能测试对比研究了交替多层共混物和PP/POE普通共混物的结构与力学性能的关系。结果表明,与含有相同乙烯-辛烯共聚物(POE)含量的普通共混物相比,交替多层共混物的低温冲击强度(-40℃)、弯曲强度和弯曲模量都得到了明显的提升。由于在交替多层结构中刚性的PP层和韧性的PP/POE层能够相互支撑,使得材料获得了优异的综合性能。  相似文献   

19.
利用微层共挤出技术制备了不同层数的热塑性聚氨酯(TPU)和碳纳米管(CNT)填充TPU交替多层复合材料,分别研究了层结构和退火处理对复合体系导电性能的影响。结果显示,在相同粒子填充量下(4%)、低层数(低于64层)样品的体积电阻率均小于TPU/CNT普通共混样,说明导电粒子在聚合物基体中的选择性多层分布更有利于相互搭接形成导电通路。但是,随着层数的增加,层叠作用逐渐破坏导电层中原本连续的粒子网络。当层数达到128层时,电阻率超过共混体系。对多层样品分别在40℃、60℃和80℃下退火1 h,层数高的样品电阻的下降幅度更大,且退火温度越高,趋势越显著。分析认为,在高温下聚合物分子链更容易发生松弛回复,提高了导电粒子在基体中的搭接几率,使导电网络更易实现重构,这为多层体系电学相关性能的改善提供了新的途径。  相似文献   

20.
碳纳米管在高分子材料中的分散性能及其二者的界面结合力决定了其复合材料的性能。用H_2O_2-FeSO_4试剂处理多壁碳纳米管(MWCNTs)使其羟基化,再与硅烷偶联剂反应分别制备了缩水甘油醚氧丙基三甲氧基硅烷改性的MWCNTs(MWCNTs-KH560)和3-氨基丙基三乙氧基硅烷-环氧树脂改性MWCNTs(MWCNTs-E51),并和含羧基的聚氨酯(PU)混合制备了MWCNTs/PU复合材料,研究了不同链段环氧基团对复合材料性能的影响。结果表明,接枝环氧基团后,MWCNTs能明显地提高其复合材料的力学性能、热稳定性能和导电率。和MWCNTs-E51相比,MWCNTs-KH560/PU具有较高的上述性能,但断裂伸长率较低。分析认为,接枝的环氧基团可和PU链上的羧基发生开环反应而形成了化学交联结构,显著地提高了MWCNTs和PU之间的界面结合力。但MWCNTs-E51接枝的较长有机链段起增塑作用,且提高了MWCNTs之间的隧道电阻,从而降低了复合材料的力学性能和导电性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号