首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《大氮肥》2015,(5)
对国内碱度分别为0.50,0.78,1.43的3种典型煤渣灰,利用Factsage热力学计算软件进行计算分析,同时进行高铬砖坩埚法抗侵蚀试验。结果显示:碱度高的煤渣在高铬砖内渗透的距离更深;碱度0.50和0.78的渣和高铬砖的主要侵蚀反应为渣对基质的部分熔蚀,以及渣中FemOn、Mg O和砖组分形成复合尖晶石;碱度为1.43的渣和高铬砖的主要侵蚀反应为渣中FemOn、Mg O和砖组分形成复合尖晶石,同时渣中的Ca O和砖中的Zr O2和Cr2O3反应生成铬酸钙和锆酸钙。  相似文献   

2.
高铬砖与煤渣侵蚀反应的初探   总被引:1,自引:1,他引:0  
使用扫描电镜和能谱仪研究了高铬砖(Cr2O3-Al2O3-ZrO2)的侵蚀反应,结果呈现出两种形式:一是形成含有部分脱锆层、再生单斜氧化锆层、再生单斜氧化锆和锆英石共存层、锆英石层;二是形成部分脱锆层和含有单斜氧化锆的渗透层。两种类型的侵蚀反应是由煤渣成分不同引起渗透层中m(CaO)/m(SiO2)比值的差异造成的:当渗透层中m(CaO)/m(SiO2)0.22时,首先在高铬砖内部由渣中SiO2与m-ZrO2形成锆英石层,再随着渗透层中m(CaO)/m(SiO2)比值的增加,形成再生单斜氧化锆和锆英石共存层、再生单斜氧化锆层和部分脱锆层;当渗透层中m(CaO)/m(SiO2)0.27时,易形成部分脱锆层和含有单斜氧化锆的渗透层。  相似文献   

3.
为了研究侵蚀温度和煤渣脱碳对水煤浆气化炉用高铬材料抗侵蚀性的影响,取含碳和脱碳两种煤渣,采用静态坩埚法,在埋炭气氛中分别于1 450和1 600℃保温5 h对高铬材料进行侵蚀试验,检测试验后高铬材料的侵蚀渗透深度、脱锆层厚度,以及原砖层的气孔率和孔径分布情况,并分析了试验条件下熔渣系统的氧势。结果表明:1)随着侵蚀温度的升高,侵蚀后坩埚渣-埚界面坩埚侧表面的尖晶石层变薄,坩埚原砖层中气孔增多,孔径增大,抗煤渣侵蚀性下降。2)含碳煤渣对高铬材料的侵蚀较强,侵蚀后残渣中有金属相;脱碳煤渣对高铬材料的侵蚀较弱,侵蚀后残渣中没有出现金属相。3)经热力学分析,当采用脱碳煤渣时,试验过程中熔渣内部的氧势在10~(-9.25)MPa以上;当采用含碳煤渣时,熔渣内部的氧势为10~(-13)~10~(-15)MPa。  相似文献   

4.
不同煤熔渣对水煤浆加压气化炉用高铬砖的侵蚀   总被引:1,自引:0,他引:1  
为研究不同煤熔渣对高铬砖的侵蚀机制,选取4种物理化学性能差异较大的典型气化炉用后煤熔渣,采用化学分析、XRD、SEM及EDS等研究了不同煤熔渣的性能及其对w(Cr2O3)≥90%的高铬砖的侵蚀、渗透情况。结果表明:气化炉中煤熔渣主要由SiO2、CaO、Al2O3、Fe2O3、MgO组成,但不同煤熔渣的化学组成差异较大,矿物组成及熔融特性温度也不同;在相同条件下,高铬砖侵蚀的主要影响因素是温度和熔渣的化学组成,随温度升高,煤熔渣对高铬砖的侵蚀急速加剧;煤渣中的熔融指数较低时,煤熔渣对高铬砖的侵蚀渗透较为严重;煤熔渣中低熔点相向材料内部渗透、渣中SiO2等对材料中ZrO2等的反应溶解是造成高铬砖失效的直接原因;高铬砖表面形成镁铝铬铁复合尖晶石致密层可以有效降低高铬砖的侵蚀程度。  相似文献   

5.
为实现RH炉的无铬化,以电熔镁砂、单斜锆为原料制备了ZrO2质量分数为11%的镁锆砖,并采用回转抗渣法进行镁锆砖和电熔再结合镁铬砖的抗高、低碱度RH炉渣对比试验,并分析了其抗渣机制。结果表明:(1)镁锆砖抗高碱度渣侵蚀性能较再结合镁铬砖强,但其抗低碱度渣侵蚀性能相对较差;在高碱度渣中形成含锆酸钙反应层是镁锆砖抗渣侵蚀性能优越的关键。(2)镁锆砖中的ZrO2吸收渣中的CaO而使渣碱度降低,黏度升高,从而使渣在镁锆砖中的渗透程度降低。(3)镁锆残砖的渣层含微量的ZrO2,从工作面到原砖层,镁锆残砖呈现出明显变质层、轻微变质层和原砖层3个段带,而镁铬残砖只有明显变质层和原砖2个段带;镁锆砖的SiO2含量在轻微变质层中最高,而镁铬砖的SiO2含量从工作面到原砖层逐渐减小。  相似文献   

6.
对含有磷酸盐的高铬砖为内衬的GE水煤浆气化炉运行中开停车次数、运行时间等状况进行了实时跟踪,测量了不同运行阶段气化炉内腔直径,计算了残砖厚度,分析了高铬砖在整个运行周期内的损毁速率及用后残砖的显微结构、成分分布和物相组成等.结果表明:含磷高铬砖在水煤浆气化炉上的全周期服役的损毁速率具有非均匀性,表现为前期慢,中后期快,...  相似文献   

7.
王刚  方旭  孙红刚  闫双志 《煤化工》2009,37(4):45-47
分析了水煤浆加压气化炉用高铬耐火材料被侵蚀破坏机理,高铬砖破损的主要原因是煤渣的渗透使高铬砖大块剥落。在此基础上,在保持较好的抗热震性前提下,提出了用浸渍处理的方法来提高高铬耐火材料抗煤熔渣侵蚀性的设想,并进行了初步试验,初步研究结果表明,该方法合理、有效。  相似文献   

8.
方旭  王晓  王晗  李坚强 《耐火材料》2014,(5):343-347
对国内多家水煤浆气化炉用后煤渣的化学分析结果表明,它们是以SiO2为主成分的酸性煤渣;根据煤渣中CaO和FeOn含量的不同,可将这些煤渣分为高硅渣、高钙渣和高铁渣三类。对三类煤渣熔融特性温度(包括软化温度、半球温度和流动温度)的测试结果表明,高硅渣的熔融特性温度最高,其次是高铁渣,高钙渣的最低。以这三类煤渣对高铬砖进行的抗渣侵蚀试验(坩埚法)表明:高钙渣的渗透深度最深,其次为高铁渣,而高硅渣渗透的深度最浅;高钙渣侵蚀后,试样基质结构被破坏,颗粒呈孤立分布;高铁渣侵蚀后,在表面形成了一层致密层;高硅渣侵蚀后,试样的连续结构也遭到一定程度的破坏。  相似文献   

9.
采用静态坩埚法,分别在空气、氩气和埋炭3种气氛中对高铬材料进行了抗煤渣试验,采用直接观察、SEM观察、EDS分析等手段,对比分析了煤渣的侵蚀深度和渗透深度。结果表明:1)试验气氛主要影响煤熔渣对高铬砖的侵蚀程度,而对煤熔渣在高铬砖中的渗透程度影响较小;2)在空气气氛中,煤熔渣对高铬砖的侵蚀和渗透程度均比在氩气和埋炭气氛中的小;3)在氩气和埋炭气氛中,溶解在煤熔渣中的Cr2O3被还原成单质Cr并从煤熔渣中析出,使高铬材料中Cr2O3在煤熔渣中的溶解-还原-析出循环不断进行,高铬材料被熔渣严重侵蚀;4)综合比较,在氩气气氛中进行的静态坩埚抗渣试验是实验室评价高铬材料较为理想的抗渣试验方法。  相似文献   

10.
利用化学分析、X射线衍射仪、光学显微镜、扫描电镜及压汞仪等方法对武钢RH精炼炉浸渍管用后镁铬残砖进行了分析,旨在找出镁铬砖的损毁行为.结果表明:残砖粘渣且存有裂纹.残砖渗透、侵蚀层主要有低熔点的钙铝黄长石和铁及其氧化物;在渗透、侵蚀层与原砖层之间存在由FeO和镁铝尖晶石组成的约40 μm厚的致密过度层.镁铬砖的损毁主要包括2部分,前期主要是砖体气孔率高、气孔直径大造成的熔渣及钢水渗透,后期是渗透的熔渣及钢水加剧砖体的溶蚀及热剥落;因此改善镁铬砖的气孔特性将会成为减缓其损毁的重要途径.  相似文献   

11.
铝铬锆砖因具有优异的抗渣侵蚀性能,被作为炉衬材料广泛应用于工作环境恶劣的危废焚烧炉。然而,铝铬锆砖在制备和服役过程中可能形成有毒的水溶性Cr(VI),相关研究工作却未见报道。本研究分别以单斜氧化锆和锆英石为氧化锆源制备了两种铝铬锆砖,研究了铝铬锆砖在四种不同组成危废焚烧炉渣中的侵蚀行为及熔渣侵蚀前后砖中Cr(VI)的含量。结果表明,锆英石高温下分解形成单斜氧化锆和无定形的二氧化硅,促进化学稳定性较好的(Al,Cr)2O3固溶体的形成,提高了铝铬锆砖的致密化程度,同时改善了铝铬锆砖的抗渣侵蚀性能。此外,生成的二氧化硅可以还原砖中Cr(VI)化合物,降低铝铬锆砖中的Cr(VI)含量。熔渣侵蚀后,铝铬锆砖渗透层中Cr(VI)含量与熔渣成分密切相关。在被高碱性氧化物含量的熔渣侵蚀后,铝铬锆砖渗透层中的Cr(VI)含量较高,但锆英石作为氧化锆源的铝铬锆砖在不同熔渣中侵蚀前后的原砖层和渗透层内的Cr(VI)含量均低于欧盟限制标准。  相似文献   

12.
还原气氛对高铬砖性能的影响   总被引:2,自引:2,他引:0  
为了有效提高高铬砖的常温物理性能和抗侵蚀性能,延长其在水煤浆加压气化炉中的使用寿命,在埋炭条件下,分别于1350、1450和1550℃烧成高铬砖,并与1700℃空气中烧成试样对比,研究了烧成气氛(埋炭和空气气氛)对高铬砖体积密度、显气孔率、常温耐压强度和抗熔渣渗透性能的影响。结果表明:随着温度升高,高铬砖的显气孔率下降、体积密度增加,而1450℃埋炭烧成高铬砖的常温耐压强度最高,达到214MPa;埋炭能显著降低高铬砖的烧成温度和改善其显微结构;1450℃埋炭烧成高铬砖的抗熔渣渗透能力优于1700℃空气中烧成试样的。  相似文献   

13.
Al2O3-Cr2O3-ZrO2砖具有较优良的抗渣侵蚀性能和力学性能,被作为内衬材料应用于危废垃圾焚烧炉.然而,危废垃圾来源广,成分复杂,其焚烧所产生的渣对砖的侵蚀程度及机理也必然不同.此外,砖中的Cr2O3在高温下可能氧化为含Cr(Ⅵ)的有害物质.为此,通过静态抗渣实验研究了四种不同组成危废灰渣对Al2O3-Cr2O3-ZrO2砖的侵蚀过程及机理,并通过浸出实验研究了熔渣对砖中Cr(Ⅵ)形成的影响.结果 表明:不同渣对Al2O3-Cr2O3-ZrO2砖的侵蚀程度及机理各不相同.高钙渣A侵蚀过程中,生成了高熔点的CA6、Ca2Al2SiO7和Ca2SiO4相,在一定程度上减缓了渣的侵蚀速度,砖体表现出最好的抗侵蚀性.高铁渣D侵蚀过程中生成熔点较低的CaFe2O4相,加之砖中Al2O3在Fe2O3-SiO2渣中的溶解度较高,因此高铁渣D对砖体的侵蚀程度最严重.高硅渣B和C侵蚀过程中主要生成钙铝黄长石新相,渣对砖体的侵蚀程度居中.不同的渣侵蚀后,渗透层中的Cr(Ⅵ)含量均增加,且渣的组成对Cr(Ⅵ)含量影响较大.由于CaO能显著促进Cr(Ⅲ)氧化为Cr(Ⅵ),高钙渣A侵蚀后,渗透层中的Cr(Ⅵ)含量最高,为84.7 mg/kg.SiO2可优先与CaO和Na2O等碱金属氧化物反应生成稳定化合物,高硅渣B和C侵蚀后,渗透层中的Cr(Ⅵ)含量较低,分别为9.9 mg/kg和13.6 mg/kg.对于高铁渣D,浸出过程会有含Cr(Ⅵ)的水化相(3CaO· Al2O3·CaCrO4·nH2O)形成,降低了Cr(Ⅵ)的浸出能力.  相似文献   

14.
为深入了解玄武岩高温熔体对耐火材料的侵蚀行为,参照ASTM C621—1984(2001)分别对致密氧化铬砖、致密锆英石砖和熔铸锆刚玉砖(AZS-33)进行了1 500℃72 h的玄武岩熔液侵蚀试验,并对侵蚀后试样进行了显微结构对比分析。侵蚀试验结果表明,致密氧化铬砖的抗熔融玄武岩侵蚀性最好,其次是致密锆英石砖,最差的是熔铸AZS-33砖,其在液面线处出现严重剥落现象。显微结构分析表明:致密氧化铬砖结构均匀,与玄武岩熔液反应性小,同时与玄武岩渣中的成分形成尖晶石致密层阻止了渣的进一步渗透;致密锆英石砖表面与玄武岩熔液反应产生很薄的脱锆层和玻璃相,并且其致密均匀的结构也阻止了渣的进一步渗透;熔铸锆刚玉砖的显气孔率虽然很低,对玄武岩熔液有较好的抗渗透性,但其液相量较多,因此抗侵蚀性相对较差。  相似文献   

15.
对砌筑在150 t精炼钢包的浇注成型和机压成型两种免烧刚玉-尖晶石衬砖的用后残砖进行了显微结构分析,探讨了其蚀损机制.结果表明:浇注成型衬砖的反应渗透层较厚,且CaO含量随着渗透深度的增大而逐渐减小,随着渣渗透、侵蚀的持续进行,热面处逐渐形成的致密层在经受热震后可能会产生结构剥落;机压成型的衬砖反应渗透层较薄,抗渣渗透性能和抗侵蚀性能较好,反应渗透层与原砖层间出现裂纹可能导致的结构剥落是其主要的损毁机制.  相似文献   

16.
为探寻适合在飞灰熔融炉中使用的耐火材料,以提高飞灰熔融炉的使用寿命,采用静态坩埚法,对国内某公司飞灰熔融炉用熔铸锆刚玉砖AZS-41以及有望适用于飞灰熔融炉的高铬砖CRB-86、铬刚玉砖CRCB-30、刚玉砖CB-99和锆英石砖DZB-69进行了抗飞灰侵蚀对比试验,并对侵蚀后试样进行了SEM和EDS分析。结果表明:1)熔铸锆刚玉砖AZS-41因结构致密而具有优异的抗飞灰渗透性,但抗飞灰侵蚀性能差。2)高铬砖CRB-86抗飞灰渗透性较好,因其高含量Cr2O3的存在而具有优异的抗飞灰侵蚀性。3)铬刚玉砖CRCB-30抗飞灰渗透性较差,因高含量且易被飞灰侵蚀的Al2O3的存在而表现出很差的抗飞灰侵蚀性。4)刚玉砖CB-99因显气孔率高,且Al2O3易被飞灰侵蚀,其抗飞灰渗透性和抗飞灰侵蚀性均最差。5)致密锆英石砖DZB-69因结构致密而具有优异的抗飞灰渗透性;但因锆英石相被飞灰中的碱性成分分解以致产生剥落,因此具有较差的抗飞灰侵蚀性。  相似文献   

17.
通过对使用后的耐火砖残砖取样分析,了解高铬砖显微结构和成分变化,找出气化炉内不同高铬砖受熔渣侵蚀损毁的机理。结果表明:对于结构相同的耐火砖,熔渣成分、温度和耐火砖的内部致密程度及杂质含量是影响耐火砖渣蚀速率的主要因素。  相似文献   

18.
ZrO2-CaO-C-SiO2浸入式水口用后显微结构分析   总被引:1,自引:1,他引:0  
以锆酸钙和石墨为主材料,添加熔融石英、硅灰石、锆英石制成新型ZrO2-CaO-C-SiO2质浸入式水口,将其在鞍钢某连铸机上正常浇铸铝镇静钢6炉后,取钢液面下的水口残样,借助EDAX、SEM等手段对其显微结构进行了分析。结果表明:新型ZrO2-CaO-C-SiO2质浸入式水口在浇铸高铝镇静钢时抗Al2O3附着性能好,从钢液反应层到试样内部依次为致密层、过渡层、原砖层,其中致密层的性质决定着浸入式水口的使用性能。  相似文献   

19.
通过对工业气化炉用后砖、回转抗渣实验后试样以及静态坩埚抗渣实验后试样宏观结构、显微结构及能谱分析,对比高铬砖在水煤浆气化炉真实服役环境和实验室模拟抗渣条件下损毁形式的不同。结果表明,高铬砖在真实气化环境中的损毁主要受:化学侵蚀、熔渣渗透以及热剥落三方面共同作用。实验室模拟条件下的两种抗渣实验结果在化学侵蚀和熔渣渗透方面与真实环境下的损毁机理较为一致,在热剥落方面与真实环境下的结果差异大。实验室抗渣模拟试验对评价气化炉用材料的抗渣侵蚀和抗渣渗透具有可借鉴性。  相似文献   

20.
在1400℃下,将平均尺寸φ15 mm?10 mm的石灰块投入CaO?SiO2?FeO及CaO?SiO2?FeO?P2O5两组渣系中,研究了静态条件下石灰在两组渣系中的溶解行为。结果表明,两组渣系在反应界面周围形成四个区域,即基体渣层、C2S渗透层、铁酸钙渗透层和石灰层。渗透层为石灰中的Ca2+与液渣中的Fe2+相互渗透所形成的一个多相共存区域,存在致密固相层影响石灰的溶解。渗透层中的铁酸钙层逐渐被C2S层取代,C2S层厚度不断增加最终溶解于液相渣中。5~60 s两组渣系石灰溶解速度相近,60~80 s含磷渣系石灰溶解速度显著加快。当渣中加入P2O5时,磷会固溶于C2S中形成C2S?C3P固溶体层,该层的形成会排挤FeO进入渣中,提高渣的渗透能力,加速石灰溶解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号