首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
分别以玻纤质量分数10%,20%,30%和40%的长玻纤增强聚丙烯(LGFRPP)材料制取一系列水驱动弹头辅助注塑(W-PAIM)管件。探究了玻纤质量分数对玻纤断裂长度、纤维取向、壁厚以及耐压性的影响。结果表明,随着玻纤质量分数的增加,玻纤断裂长度在较长区间内占比降低;不同玻纤质量分数的W-PAIM制件在壁厚层的取向不同,水道层的玻纤沿流动方向取向较模壁层和中间层更好,当玻纤质量分数为10%与40%时,水道层玻纤取向度最好,玻纤质量分数为20%时,中间层取向最差,玻纤质量分数为30%时,模壁层的玻纤取向较好;随着玻纤质量分数的增加,WPAIM管件壁厚呈先增加后减小再增加的趋势;随着玻纤质量分数的增加,管件的耐压性先增加后减小最后又增加,当玻纤质量分数为20%时,耐压性最好。  相似文献   

2.
以玻纤质量分数分别为10%、20%、30%、40%的短玻纤增强聚丙烯复合材料制备了系列水辅注塑管件,观测比较了实验条件下玻纤含量对沿流动方向的壁厚及玻纤的取向分布的影响。发现在实验条件下,沿流动方向管件的壁厚呈逐渐增大的趋势,随着玻纤含量的增加,管件壁厚逐渐减小;玻纤的分布在管件壁厚层可分为近模壁层、中间层、近水道层三层;在近模壁层和近水道层玻纤的取向度较高,但在玻纤含量较高时存在玻纤断裂现象;中间层的玻纤取向度较低。最后从水辅助注塑的流场特点及玻纤的相互作用阐述了玻纤含量对管件壁厚及玻纤取向分布的影响机理。  相似文献   

3.
玻纤增强注塑件的均匀化弹性力学参数研究   总被引:1,自引:0,他引:1       下载免费PDF全文
李涛  严波  彭雄奇  申杰  郭庆 《复合材料学报》2015,32(4):1153-1158
基于均匀化方法,根据长玻纤增强聚丙烯(LGFR-PP)的微观特征,建立了非连续长玻纤增强复合材料的代表性体积单元(RVE),通过有限元方法模拟预测了复合材料的宏观等效弹性力学参数,与注塑样条拉伸性能测试结果进行了比较。研究表明,通过在玻纤两侧增加聚丙烯(PP)分布,所采用的RVE较传统连续纤维的有限元模型更为合理;当玻纤成单一取向时,玻纤增强聚丙烯为一种横观各向同性材料;改变玻纤取向与拉伸方向之间的角度,拉伸方向的等效模量先微幅减小,再迅速降低,而后趋于稳定。利用均匀化方法预测非连续长玻纤增强注塑件的等效弹性力学性能具有较高的工程可行性,能进一步为玻纤增强注塑件的结构服役性能分析提供科学依据。  相似文献   

4.
考虑纤维方向分布的玻纤增强PP复合材料拉伸性能   总被引:2,自引:0,他引:2  
纤维方向及其分布对玻纤增强PP复合材料的力学特性具有至为关键的影响.提出了一种快速获取纤维数量及每根纤维方向的方法.通过引入方向张量,利用Moldflow软件进行玻纤增强PP树脂注塑成型模拟获得纤维方向的平均分布,结合显微方法观察判断特定点的纤维沿厚度方向的分层情况及定量判断纤维方向的分布.对轿车玻璃纤维增强注塑仪表板的纤维方向相对一致处取与纤维方向呈0°、45°、90°的样条,通过拉伸实验测得拉伸模量,利用所提出的方法研究了仪表板内玻纤方向的分布及其对拉伸模量的影响.研究结果表明:玻纤增强注塑仪表板的力学性能是各向异性的,其沿厚度方向纤维按方向大致可分为三层.  相似文献   

5.
纤维方向及其分布对玻纤增强PP复合材料的力学特性具有至为关键的影响。提出了一种快速获取纤维数量及每根纤维方向的方法。通过引入方向张量, 利用Moldflow软件进行玻纤增强PP树脂注塑成型模拟获得纤维方向的平均分布, 结合显微方法观察判断特定点的纤维沿厚度方向的分层情况及定量判断纤维方向的分布。对轿车玻璃纤维增强注塑仪表板的纤维方向相对一致处取与纤维方向呈0°、45°、90°的样条, 通过拉伸实验测得拉伸模量, 利用所提出的方法研究了仪表板内玻纤方向的分布及其对拉伸模量的影响。研究结果表明: 玻纤增强注塑仪表板的力学性能是各向异性的, 其沿厚度方向纤维按方向大致可分为三层。  相似文献   

6.
为提高聚丙烯(PP)基复合材料的力学性能和热学性能,将不同质量分数的超微竹炭(UFBC)作为增强体引入聚丙烯,通过熔融挤出及注塑成型工艺制备UFBC/PP复合材料。利用SEM和DSC分析、力学强度和吸湿性测试等手段综合表征复合材料性能。结果表明:UFBC与PP基体间界面结合紧密;UFBC的添加对PP复合材料的力学强度有较好的增强效果:UFBC质量分数为30wt%时,UFBC/PP复合材料的拉伸强度和弯曲强度达到较大值,分别为26MPa和54MPa,较纯PP分别提高了9%和18%,UFBC/PP复合材料的耐湿性仍保持较佳水平,吸湿率均小于0.1%;UFBC质量分数为40wt%时,熔融温度提高了3.1℃;UFBC质量分数为50wt%时,UFBC/PP复合材料的结晶温度提高了10.8℃。UFBC的添加有效促进了UFBC/PP复合材料的结晶,改善了其加工性。  相似文献   

7.
报道了短玻纤增强聚丙烯复合材料中玻纤及注射压力对材料微观结构和力学性能的影响规律。实验结果表明: 随着玻纤含量提高, 复合材料的拉伸强度提高, 而断裂伸长率、冲击强度和熔体流动速率则下降。注射压力提高, 拉伸试样芯层中玻纤的平均取向角下降, 取向度提高, 因而拉伸强度增大, 冲击强度下降。皮层结构中玻纤沿熔体流动方向高度取向。聚丙烯球晶尺寸随玻纤含量增加而变小, 规整度也变差, 至40% 时, 聚丙烯已难以形成规整的球晶结构。  相似文献   

8.
利用自行研制的玻璃纤维(GF)增强聚丙烯(PP)预浸装置,制备了长玻纤增强聚丙烯(LGFRP)粒料,并通过普通注塑机注塑成型。研究了界面改性、粒料长度、浸渍程度及退火处理等对注塑试样拉伸强度的影响。试验发现,用接枝马来酸酐PP作为界面相容剂,试样的拉伸强度明显提高。当接枝马来酸酐量占PP量的0.3 %左右时,试样强度达到最大值。长纤维粒料内纤维浸渍度越高,注塑试样的强度越好。15 mm和5 mm长纤维粒料注塑成型试样的拉伸强度均高于10 mm粒料注塑成型的试样。退火处理可较大程度地提高注塑试样的拉伸强度。  相似文献   

9.
纤维取向分布直接影响水辅注塑成型制品的使用性能,如冲击强度、屈服强度及拉伸强度等。多样化的流道截面型腔用于满足水辅制品在不同场合中的应用,不同的流道截面型腔势必会影响水辅制品中纤维取向分布。文中旨在研究圆形、上圆下方形及方形的截面流道型腔中短玻纤增强聚丙烯复合材料的水辅助注射成型过程。结果发现,随着熔体温度的升高、注水压力的增大及注水延迟时间的缩短,3种流道截面型腔制品的中间端处残余壁厚减薄及短玻纤沿聚合物熔体流动方向的取向度提高,且在相同加工变量下,圆形截面流道型腔制品的中间端处残余壁厚最薄及短玻纤沿聚合物熔体流动方向的取向度最高,其次是上圆下方形,最后是方形。综合制品的中间端1处及2处残余壁厚可知,聚合物熔体温度在210~230℃、注水压力7~10 MPa及注水延迟时间1~5 s时,上圆下方形截面型腔制品的中间端处残余壁厚及短玻纤沿聚合物熔体流动方向的取向度更趋近于圆形。  相似文献   

10.
注塑工艺和玻纤含量对玻纤增强PP注塑制品收缩的影响   总被引:2,自引:0,他引:2  
文中结合计算机辅助工程(CAE)及Taguchi实验设计(DOE)技术研究了玻纤含量和工艺参数对玻纤增强聚丙烯注塑制品各向异性收缩的影响。基于Taguchi DOE方法采用L18(36)正交矩阵进行了实验以优化制品的收缩,并研究了各个参数对制品收缩的影响程度。对于主实验中所选因素,纤维含量、熔体温度和保压压力对玻纤增强聚丙烯注塑制品各向异性收缩的影响较大。  相似文献   

11.
基于广义牛顿流体本构方程,采用ARD-RSC纤维取向模型,考虑纤维间相互作用,仿真预测长玻纤增强复合材料注塑构件的纤维取向分布;应用复合材料细观力学Eshelby夹杂理论和Mean Field均匀化方法,建立长玻纤增强复合材料均质化RVE模型;综合运用复合材料细观建模、离散RVE模型场、注塑成型和结构有限元分析技术,提出了长玻纤增强复合材料注塑构件强度分析方法。对推力杆注塑构件进行强度分析,显示仿真危险位置与实际破坏位置较为吻合。在此基础上对推力杆进行结构改进,结果表明杆体中间部分在拉伸载荷下的最大主应力降低了57.18%,在压缩载荷下的最大主应力降低了71.25%。  相似文献   

12.
采用不同玻纤含量的标准拉伸试样,应用试验方法,通过玻纤含量对玻纤增强PP复合材料的拉伸性能进行比较,找出了实现最佳抗拉强度的玻纤含量。  相似文献   

13.
溢流法水驱动弹头辅助共注塑(Overflow water-projectile assisted co-injection molding,W-PACIM-O)工艺可制取双层包覆式结构的中空管件。采用数值模拟技术分析了W-PACIM-O工艺注水阶段的界面不稳定性现象、管件壁厚分布以及内层熔体和弹头穿透行为,从而掌握W-PACIM-O的相间穿透机理。模拟结果表明,W-PACIM的湍流强度相对较小,且基本无湍流漩涡,其起始段壁厚界面不稳定性现象不明显;W-PACIM管件的总残余壁厚、外层壁厚和内层壁厚更薄,壁厚波动较小;压力水驱动弹头穿透阶段,W-PACIM工艺穿透前沿速度更高,穿透更稳定。  相似文献   

14.
对水驱动弹头辅助注塑(W-PAIM)中工艺方法和工艺参数对管件壁厚的影响进行了实验研究。对水驱动弹头辅助注塑短射法(W-PAIM-S)、溢流法(W-PAIM--O)及水辅助注塑短射法(WAIM-S)、溢流法(WAIM-O)4种工艺方法进行比较,发现W-PAIM管件比WAIM(水辅助注塑技术)管件壁厚要薄得多,而W-PAIM-O管件壁厚又比W-PAIM-S管件壁厚要更均匀。采用正交试验法考察了熔体温度、注水压力、射胶压力、保压时间、注水延迟时间、模具温度对WPAIM-O管件壁厚的影响规律与大小,发现注水延迟时间和熔体温度对壁厚影响很大,因素影响比合计超过70%;而射胶压力、注水压力及保压时间的影响较小,因素影响比合计不足17%;管件残余壁厚随注水延迟时间的延长逐渐增大,随着熔体温度的升高先减小后增大。  相似文献   

15.
对水驱动弹头辅助注塑(W-PAIM)中工艺方法和工艺参数对管件壁厚的影响进行了实验研究。对水驱动弹头辅助注塑短射法(W-PAIM-S)、溢流法(W-PAIM--O)及水辅助注塑短射法(WAIM-S)、溢流法(WAIM-O)4种工艺方法进行比较,发现W-PAIM管件比WAIM(水辅助注塑技术)管件壁厚要薄得多,而W-PAIM-O管件壁厚又比W-PAIM-S管件壁厚要更均匀。采用正交试验法考察了熔体温度、注水压力、射胶压力、保压时间、注水延迟时间、模具温度对WPAIM-O管件壁厚的影响规律与大小,发现注水延迟时间和熔体温度对壁厚影响很大,因素影响比合计超过70%;而射胶压力、注水压力及保压时间的影响较小,因素影响比合计不足17%;管件残余壁厚随注水延迟时间的延长逐渐增大,随着熔体温度的升高先减小后增大。  相似文献   

16.
水驱动弹丸辅助注塑技术(W-PAIM)是利用高压水驱动预置于模具型腔中的弹丸穿透熔料得到中空塑件的新型注塑工艺。采用实验与模拟相结合的方式研究了W-PAIM弯管的壁厚分布机理。通过比较水辅助注塑(WAIM)和WPAIM弯管试样的壁厚,发现W-PAIM管件的壁厚要薄得多,其壁厚主要取决于弹丸截面尺寸及高压水对弹丸穿透边界熔体的挤压;对弯曲半径相同、偏转角不同的弯曲处壁厚的实验与模拟研究发现弯曲内侧壁厚薄、外层壁厚厚,且壁厚差随偏转角度增大而增大;对偏转角为90°,弯曲半径不同的弯曲处壁厚的实验与模拟研究发现,弯曲处壁厚差随弯曲半径的增大而减小。通过模拟结果分析发现,这都是由于弯曲处的压力分布特点与速度分布特点所致。  相似文献   

17.
洪晓东  王铀  姜鸿波 《化工新型材料》2013,41(2):147-148,151
以表面改性的磨碎玻纤为增强材料制备了环氧树脂薄膜作为传感器应变片的基底材料。考察了玻纤表面改性及添加量对材料性能的影响。结果表明,随着偶联剂用量、玻纤填充量的增加材料的拉伸强度和拉伸模量均先增大后减小。薄膜微结构表明,填充20wt%的改性玻纤增强材料中纤维能够更好的分散在树脂中,玻纤在材料内部比较集中的区域能够互相交叠。随着改性玻纤含量的增加材料的玻璃化温度和抗蠕变性能明显改善。结果证实,填充20wt%的1wt%KH-550偶联剂改性的磨碎玻纤的增强环氧树脂材料具有最佳的力学强度、耐热性和抗蠕变性能。  相似文献   

18.
采用气体辅助注射成型(GAIM)和普通注射成型(CIM)制备了玻纤(GF)增强高密度聚乙烯(HDPE)复合材料。通过扫描电镜对复合材料中的玻纤取向进行了研究,发现CIM试样的玻纤仅在表层有轻微取向,而GAIM试样在整个横截面上玻纤均发生了明显的取向,且在次表层处取向强烈,排列十分规整。在此前研究工作的基础上,进一步探讨了玻纤取向结构的形成机理。  相似文献   

19.
为提高玻纤增强环氧树脂复合材料的力学性能,采用静电植绒法将多壁碳纳米管(MWCNTs)附着在玻纤织物表面,得到改性的玻纤织物。利用一种低黏度的环氧树脂和所制得的改性织物,采用真空辅助成型工艺(VARI)制备了MWCNTs改性格玻纤织物/环氧树脂复合材料层合板,表征了层合板的力学性能。对进行力学实验后的MWCNTs改性玻纤织物/环氧树脂复合材料试样断口进行了SEM和OPM观察。结果显示:与未添加MWCNTs的玻纤织物/环氧树脂复合材料层合板相比,添加了MWCNTs的层合板的拉伸强度降低了10.24%,弯曲强度降低了13.90%,压缩强度降低了17.33%,拉伸模量和弯曲模量分别提高了19.38%和16.04%,压缩模量提高了13%;MWCNTs与玻纤织物之间的结合较弱,在拉伸作用下,存在明显的脱粘和分层;将改性玻纤织物在200℃下热压处理2h后,制备的MWCNTs改性玻纤织物/环氧树脂复合材料层合板的力学性能均有所提高,热压处理后树脂与玻纤织物之间的界面结合得到改善。  相似文献   

20.
孙亚颇 《功能材料》2023,(3):3174-3178
选择不饱和聚酯树脂为基体材料,以玻璃纤维为增强相,采用模压成型工艺制备了不同玻璃纤维掺杂量(0,5%,10%,15%和20%(质量分数))的聚酯玻纤复合材料,分析了玻璃纤维含量对复合材料的微观形貌、热稳定性、拉伸性能和弯曲性能的影响。结果表明,聚酯玻纤复合材料中玻璃纤维和不饱和聚酯主要以物理作用为主,适量的玻璃纤维掺杂后能与聚酯基材紧密结合,分布具有方向性。随着玻璃纤维掺杂量的增大,聚酯玻纤复合材料的分解温度先增大后减小,且耐热性能提高,当玻璃纤维的掺杂量为15%(质量分数)时,复合材料的T50%达到最大值368.47℃。力学性能测试表明,随玻璃纤维掺杂量的增大,复合材料的拉伸强度和冲击强度先增大后减小,断裂延伸率和弯曲强度持续降低,当玻璃纤维的掺杂量为15%(质量分数)时,复合材料的力学性能最优,拉伸强度最大为26.1 MPa,断裂延伸率为2.6%,冲击强度达到最大值8.1 MPa,弯曲强度为30.5 MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号