共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
针对文本生成图像任务过程中存在图像视觉特征和通道特征信息利用不充分问题,提出一种基于特征增强生成对抗网络(FE-GAN)的文本生成图像方法.首先,在动态记忆读取时,设计二次记忆(MoM)模块来对生成的中间特征进行注意与融合,利用注意力机制在记忆读取时进行第一次视觉特征增强,再将得到的注意力结果和上一个生成器生成的图像特征进行融合,实现第二次图像视觉特征增强.然后,在残差块中引入通道注意力来获取图像特征中的不同语义,提升相似语义通道之间的关联性,实现通道特征增强.最后,将实例归一化上采样块和批量归一化上采样块相结合来提高图像分辨率,同时缓解批量大小对生成效果的影响,提升生成图像风格多样性能力.在CUB-200-2011和Oxford-102数据集上进行的仿真实验表明,所提方法的IS分别达到了4.83和4.13,与DM-GAN相比分别提高了1.68%和5.62%.实验结果表明,FE-GAN生成的图像在细节处理上更好,更加符合文本语义. 相似文献
4.
基于深度神经网络的语音分离方法大都在频域上进行训练,并且在训练过程中往往只关注目标语音特征,不考虑干扰语音特征。为此,提出了一种基于生成对抗网络联合训练的语音分离方法。该方法以时域波形作为网络输入,保留了信号时延导致的相位信息。同时,利用对抗机制,使生成模型和判别模型分别训练目标语音和干扰语音的特征,提高了语音分离的有效性。实验中,采用Aishell数据集进行对比测试。结果表明,本文所提方法在三种信噪比条件下都有良好的分离效果,能更好地恢复出目标语音中的高频频段信息。 相似文献
5.
为提高语音识别系统在复杂声学场景下的识别率,出现了以单通道语音增强(Monaural Speech Enhancement)技术作为前端处理的鲁棒语音识别系统.尽管现有的单通道语音增强技术能够提高混响干扰下的识别率,却未能显著提升宽带非平稳噪声干扰下的系统识别率.为此,本文提出基于听觉掩蔽生成对抗网络的单通道增强方法,... 相似文献
6.
对于小样本电磁信号识别,数据增强是一种最为直观的对策。利用生成对抗网络(GAN)产生虚假信号样本,设计粗粒度和细粒度筛选机制对生成信号进行筛选,剔除质量较差的生成信号,实现训练样本集的有效扩充。为验证所提数据增强算法的有效性,在RADIOML2016.04C数据集上进行测试。实验结果表明,本文所提方法对小样本电磁信号识别准确率有较好的提升效果。 相似文献
7.
机器学习已经广泛应用于恶意代码检测中,并在恶意代码检测产品中发挥重要作用。构建针对恶意代码检测机器学习模型的对抗样本,是发掘恶意代码检测模型缺陷,评估和完善恶意代码检测系统的关键。该文提出一种基于遗传算法的恶意代码对抗样本生成方法,生成的样本在有效对抗基于机器学习的恶意代码检测模型的同时,确保了恶意代码样本的可执行和恶意行为的一致性,有效提升了生成对抗样本的真实性和模型对抗评估的准确性。实验表明,该文提出的对抗样本生成方法使MalConv恶意代码检测模型的检测准确率下降了14.65%;并可直接对VirusTotal中4款基于机器学习的恶意代码检测商用引擎形成有效的干扰,其中,Cylance的检测准确率只有53.55%。 相似文献
9.
针对小样本条件下遥感图像目标的检测精度受到卷积神经网络过拟合影响的问题,提出一种基于生成对抗网络的数据增强方法,利用判别模型为生成模型同时提供图像的局部决策与全局决策,以提高生成模型生成图像的质量,并将生成的目标与训练集图像进行融合得到新的样本,且新生成的样本不需人工标注.实验结果表明,在原始数据中加入生成数据后,检测... 相似文献
10.
自动说话人确认(Automatic Speaker Verification,ASV)技术在日常生活中起着重要作用,同时它也面临着语音合成等欺骗攻击的威胁,因此为ASV系统提供一个有效的合成话音检测方法刻不容缓。近年来,检测任务更加侧重于在真实物理环境下对合成话音展开研究。为了提高模型的鲁棒性,引入虚拟对抗训练对检测任务进行数据增强。实验中在前端提取了多个特征,并在后端采用了SE-Res2net50和ECAPA2D-BL/BG模型。最后还将多个特征,多个模型的打分结果进行融合,提高了总体的检测性能。在逻辑访问场景中,ASVspoof2019挑战赛评估集的串联成本检测代价(tandem Detection Cost Function,t-DCF)和等错率(Equal Error Rate,EER)分别达到0.018 7和0.56%,ASVspoof2021挑战赛评估集的t-DCF和EER分别达到0.307 3和6.05%。 相似文献
11.
针对深度学习中训练样本数量少,难以满足深度学习需求的问题,提出一种基于深度卷积生成对抗网络(Deep Convolutional Generative Adversarial Networks,DCGAN)的数据增强方法,将深度学习运用于数据增强,利用卷积神经网络(Convolutional Neural Network,CNN)构建生成器与鉴别器网络,引入高斯误差线性单元(Gaussian Error Linear Unit,GELU)作为激活函数。将名人头像数据集(Large-scale CelebFaces Attributes,Celeb A)作为训练样本进行训练。试验结果表明,该网络的鉴别器损失值快速收敛于0附近,生成器损失值快速收敛于3附近,收敛速度较快。网络能够根据学习到的样本数据分布,生成逼真的样本数据,该方法能够有效解决样本数量稀少的问题,实现数据增强。 相似文献
12.
电波传播模型是频谱管理、通信领域的关键研究内容。能否精准刻画电波传播模型,将直接影响传播损耗计算、频谱态势生成等实际效果。模型研究需电磁环境感知数据支撑,而现有电磁环境感知数据稀缺,采集困难,且往往只关注场强等表征信道特性的要素,因此研究了一种基于生成对抗网络的电波传播数据增强方法。该方法由经纬度获取测量点高程信息和卫星图像,并联合经纬度基于条件生成对抗网络对卫星图像增强,获得包含信道特性和地形变化的联合数据集。结果表明,在相同电波传播预测模型下,采用该方法生成的数据集预测精度提高2.7%,使得传播模型构建具备了更多的数据支撑。 相似文献
13.
针对小样本条件下深度学习缺陷检测算法识别率较低的问题,提出一种基于双通道生成对抗网络的数据增强方法.由全局鉴别层和局部鉴别层两通道组成生成对抗网络,其中局部鉴别器可以增加缺陷类型的置信度损失,实现对局部信息的增强.采用所提方法在镜片缺陷图像数据集上进行实验.实验结果表明,所提方法的最近邻留一指标、最大均值差异和Wass... 相似文献
14.
针对现有深度学习中图像数据集缺乏的问题,提出了一种基于深度卷积生成式对抗网络(Deep Convolutional Generative Adversarial Network, DCGAN)的图像数据集增强算法。该算法对DCGAN网络进行改进,首先在不过多增加计算量的前提下改进现有的激活函数,增强生成特征的丰富性与多样性;然后通过引入相对判别器有效缓解模式坍塌现象,从而提升模型稳定性;最后在现有生成器结构中引入残差块,获得相对高分辨率的生成图像。实验结果表明,将所提方法应用在MNIST、SAR和医学血细胞数据集上,图像数据增强效果与未改进的DCGAN网络相比显著提升。 相似文献
15.
基于机器学习的舰船目标识别近年来已成为水声信号处理领域的一个重要研究方向,但水声目标信号的获取困难,样本量不足和不均衡的问题很容易导致目标分类模型的识别效果不佳。该文提出一种基于条件卷积生成对抗网络的船舶噪声数据分类方法,该方法利用生成对抗学习理论,生成相比于传统数据增强算法非线性特征更强,特征差异更丰富的伪DEMON调制谱数据来缓解训练样本量不足的问题。之后将传统生成对抗网络中的全连层输出替换成更善于解决小样本问题集成分类器,从而降低分类器对于数据量的依赖程度,进一步提高分类模型性能。最终由基于真实样本的实验结果表明,相比于传统数据增强算法和卷积生成对抗网络,该文方法能够更有效提高在样本不足条件下的模型的分类性能。 相似文献
17.
针对数据集样本数量较少会影响深度学习检测效果的问题,提出了一种基于改进生成对抗网络和MobileNetV3的带钢缺陷分类方法.首先,引入生成对抗网络并对生成器和判别器进行改进,解决了类别错乱问题并实现了带钢缺陷数据集的扩充.然后,对轻量级图像分类网络MobileNetV3进行改进.最后,在扩充后的数据集上训练,实现了带... 相似文献
18.
针对网络切片场景中,由于软硬件异常而导致服务功能链(SFC)异常的问题,该文提出一种基于分布式生成对抗网络(GAN)的时间序列异常检测模型(DTSGAN)。首先,为学习SFC中正常数据的特征,提出分布式GAN架构,对SFC中包含的多个虚拟网络功能(VNF)进行异常检测;其次,针对时间序列数据构建一种基于滑动窗口数据特征提取器,通过提取数据的两种衍生特性和8种统计特征以挖掘深层次特征,得到特征序列;最后,为学习并重构数据特征,提出时间卷积网络(TCN)与自动编码器(AE)构建的3层编解码器作为分布式生成器,生成器通过异常得分函数衡量重构数据与输入数据的差异以检测VNF的状态,进而完成SFC的异常检测。在数据集Clearwater上采用准确率、精确率、召回率和F1分数这4个性能指标验证了该文所提模型的有效性和稳定性。 相似文献
19.
针对现有面向目标检测的白盒攻击方法在不可察觉性上的不足,从扰动生成过程与扰动成本的限制两方面,提出一种隐蔽式对抗扰动生成方法(stealthy adversarial perturbation generation, SPG)。该方法首先利用图像的纹理信息,赋予扰动在难以被人眼察觉的高纹理区域更高的权重,然后采用扰动位置选取策略降低修改的像素点数目,最后进行对抗扰动的解耦计算,自适应地搜索具有最佳L2范数度量的对抗扰动。所提方法以4种主流目标检测器作为攻击对象,在COCO-MS 2014和PASCAL-VOC数据集上与对比方法进行了评估。实验结果表明,本文攻击方法的不可察觉性的度量值优于对比方法,其生成的对抗扰动具有低于0.239的L0范数和2.9×10-5以内的L2范数,同时使得目录检测器的mAP降低至9%以下。 相似文献
20.
生成对抗网络(generative adversarial network,GAN)作为深度学习下无监督学习的典型方法,使用深度学习的计算机辅助诊断系统目前已经覆盖病灶检测、病理诊断、放疗规划和术后预测等各临床阶段,在医学图像领域取得了许多显著的成果.首先介绍了医学图像领域存在的基本问题,并简单介绍了生成对抗网络模型的... 相似文献