共查询到20条相似文献,搜索用时 0 毫秒
1.
针对图像中人物的检测,为了能够更加精确地检测定位图像中的人物,在基于Faster R-CNN框架的基础上提出了一种改进其特征网络ResNet-101的方法来进行人物深层特征的提取。在实验阶段,通过配置GPU环境以调用GPU加速和并行处理器来提高训练速度,实验结果表明,模型迭代1 000次后,所提出的改进的特征网络模型相较于原始特征网络模型在准确度上提高了1.6%,平均检测精度提高了5.1%,说明改进的算法降低了人物的的漏检测率和误检测率,相对于原算法具有更好的准确度和识别精度。 相似文献
2.
针对传统图像处理算法在检测隐形眼镜表面缺陷时存在精度低、耗时长、算法鲁棒性差、漏检多等问题,提出一种基于改进Faster R-CNN的隐形眼镜表面缺陷检测算法。首先,对比了3种特征提取网络的性能,选取ResNet50作为骨干网络;然后,引入特征金字塔网络(FPN),通过融合多层次的特征信息,提高Faster R-CNN的多尺度检测能力;最后,基于构建的隐形眼镜表面缺陷数据集,使用K-means++算法改进锚框的尺度和数量。实验结果表明:改进后的Faster RCNN算法在测试集上的平均精度均值(mAP)达到了86.95%,相比于改进前的Faster R-CNN算法,提高了9.45个百分点,可以有效地检测出气泡、车削亮点、划痕、模具亮点等多种隐形眼镜典型缺陷。 相似文献
3.
4.
5.
6.
遥感图像军用飞机目标检测对侦察预警和情报分析等领域具有重要意义。针对该任务中图像背景复杂、目标尺度变化大和分布密集等挑战,提出了一种基于Faster R-CNN的轻量化检测模型。该模型使用残差拆分注意力网络来捕获目标区域特征的全局上下文信息以提升模型的表征能力;利用可变形卷积来动态学习目标区域的形变特征,适应不同尺度和形状的目标;采用对比实验的方法精简骨干网络,降低过深的骨干网络与过低的采样率对于小目标检测的影响,提高模型的识别速度。在目标候选框筛选阶段,引入Soft NMS算法,根据置信度降序排名去除重叠度高的候选框,降低密集分布目标的漏检率。实验结果表明,提出的Faster R-CNN模型在参数量为23.844 MB的情况下,mAP0.5-0.95达到了77.1%,检测速度达到了43.7帧/秒,相比于多个主流模型具有较好的综合性能。 相似文献
7.
旋转机械是机械设备的核心部件,一旦发生故障会造成不可估量的损失,因此旋转机械的实时监测诊断显得尤为必要。无人值守的红外智能监测诊断将是故障诊断新的发展方向,要实现红外智能监测诊断首先要准确识别旋转机械部件。本文利用红外热像仪监测旋转机械的运行状态,获得了电动机、联轴器、轴承座、齿轮箱等设备的红外热图;采用Faster R-CNN算法对测量得到的旋转机械红外图像进行了学习训练和目标识别,结果表明该算法能够准确识别旋转机械部件;研究了单角度和旋转角度红外监测的识别效果,发现在相同角度下使用红外灰度图像进行训练的检测效果比使用红外伪彩色图像训练的检测效果更佳;对比了4种预训练网络对于红外目标识别的影响,采用Resnet50预训练网络的平均检测精度为0.9345,识别精度更高。 相似文献
8.
针对大视野交通场景下背景复杂和交通标志目标较小的问题,提出一种改进FasterR-CNN检测网络的算法。首先采用深度残差网络ResNet50作为骨干网络,提取交通标志的特征;然后设计了在两个不同层级特征图上使用合理尺度滑动窗口的策略来生成目标建议区域,增强多尺度交通标志的检测能力;最后在残差块中引入注意力机制模块,强化图像的关键信息,抑制图像的背景信息。在中国交通标志数据集上验证了算法的有效性,取得了98.52%的平均检测精度和每幅图像0.042s的检测速率。本文算法检测效果明显优于原FasterR-CNN检测方法,更适用于复杂场景下的交通标志检测,鲁棒性较强。 相似文献
9.
10.
11.
代恒军 《信息技术与信息化》2023,(8):91-94
随着科技的不断发展,图像充斥在人类生活的任何角落,因此如何提取出图像中包含的信息,完成对图像目标的检测是当前研究的热点问题。针对一阶段目标检测算法可能会对目标图像产生漏检的情况,本文使用MobileNet V2和ResNet50网络对传统的Faster R-CNN的主干特征提取网络进行改进。在公开数据集上的实验结果表明,基于MobileNet V2特征提取的Faster R-CNN网络占用的计算资源和存储资源最少,基于ResNet50特征提取的Faster R-CNN网络的检测效果最优。此外,两种改进的Faster R-CNN网络均能有效克服一阶段目标检测算法中的漏检问题。 相似文献
12.
13.
外界因素常会干扰钢轨表面缺陷检测仪器,导致其精度和效率降低。文中研究了一种基于Faster R-CNN网络检测钢轨表面缺陷的方法。该方法将预处理后的图像进行反转,利用Radon变换实现钢轨图像的投影。投影曲线中,利用钢轨长度为定值且灰度值小于图像平均值的特性,完成对钢轨表面区域的提取。然后通过区域建议网络提取候选区域,并与Fast R-CNN网络的区域建议对比分析,完成Faster R-CNN网络对钢轨的表面缺陷检测。试验数据表明,裂缝、疤痕、磨损和划伤4种缺陷的识别精度分别为92.17%、91.85%、93.45%和93.27%,证明使用该方法能够高效而又准确地识别钢轨的表面缺陷。 相似文献
14.
15.
16.
17.
针对Faster R-CNN目标检测算法存在的定位和检测精度问题,设计了一种可嵌入Faster R-CNN目标检测算法并进行端到端训练的可移动的注意力(MA)模型。首先,为了获取更加精确的空间位置信息,MA采用两个自适应最大池化分别基于输入特征图的水平和竖直两个方向进行特征聚合,生成两个独立的方向感知特征图;其次,为了防止模型过拟合,使用Sigmoid激活函数增加网络非线性;最后,为了充分利用已经得到的空间位置信息,将具有非线性的两个特征图与输入特征图依次相乘以增强输入特征图的表征能力。实验结果表明:基于MA改进的Faster R-CNN目标检测算法有效地提升了网络对感兴趣目标的定位能力,并且平均检测精度也得到了明显的提升。 相似文献
18.
针对目标检测网络Faster R-CNN(Faster Region-Convolutional Neural Network)存在漏检、误检和检测精度低的问题,提出一种融合注意力机制和Soft-NMS(Soft Non-Maximum Suppression)的Faster R-CNN目标检测算法.为了增强Faste... 相似文献
19.
在航拍影像中定位绝缘子爆裂的位置是一项艰巨的任务.针对绝缘子和绝缘子爆破位置在图像中占比过小、背景复杂以及拍摄图像角度和大小不一等问题,采用一种注意力机制与Faster R-CNN和U-net相结合的绝缘子识别模型,对某电力科学研究院提供的绝缘子航拍图像进行测试和对比试验,结果表明,该模型识别绝缘子的平均精度(Aver... 相似文献
20.