首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure and adhesion of an alumina coating on a ceramic substrate with NiCrAlY alloy bond coating was investigated by heating at 1573 and 1673 K in the air. Phases of NiO, NiCrO3, NiAl2O4, αAl2O3, and Ni were revealed in a 100 μm thick bond coating on heating at 1573 and 1673 K. A veined structure was also detected in the coating heated at 1573 K. The adhesion strength of the coating was improved and reached approximately 20 MPa on heating at 1573 and 1673 K for 14.4 ks in air although the strength of the as-sprayed coating was only 2 MPa. The improvement of adhesion strength may arise from the formation of NiAl2O4 with a spinel structure at the interfaces of the top coating/bond coating/substrate coating system. The adhesion strength of the coating improved on decreasing the bond coating thickness and reached approximately 45 MPa for a 20 μm thick bond coating which was heated at 1673 K. Only NiAl2O4 oxide was formed in the bond coating.  相似文献   

2.
Corrosion fatigue behavior of a steel with sprayed coatings   总被引:1,自引:0,他引:1  
This paper describes the corrosion fatigue behavior and fracture mechanisms of a steel with different sprayed coatings. Rotating bending fatigue tests were conducted in 3% NaCl solution using specimens of a medium carbon steel with sprayed coatings of a ceramic (Cr2O3), a cermet (WC-12%Co) and two metals (Ni-11 % P and Al-2% Zn). The corrosion fatigue process was basically the same for ceramic, cermet, and Ni-11 % P sprayed specimens. That is, the corrosive media could be supplied from the specimen surface to the substrate through cracks initiated during fatigue cycling and/or pores in the coatings, and thus corrosion pits were generated followed by subsequent crack initiation and growth in the substrate. The corrosion fatigue strength of ceramic sprayed specimens was slightly improved compared to that of the substrate steel because the under-coating (Ni-5%A1) could impede the penetration of the corrosive media although the ceramic coating had a poor resistance to cracking under cyclic loading. Cermet sprayed specimens also exhibited improved corrosion fatigue strength because of the high resistance to cracking and the low volume fraction of pores of the coating. In Ni-11 % Psprayed specimens, cracks were initiated in the coating even at low stress levels; thus the corrosion fatigue strength was the same as that of the substrate. Anodic dissolution took place in Al-2 % Zn coating because the coating was electrochemically poor, and thus the substrate was cathodically protected. Therefore, the corrosion fatigue strength of Al-2 % Zn sprayed specimens was enhanced to as high as the fatigue strength of the substrate in room air. Based on the experimental results, a dual-layer coating consisting of WC-12%Co and Al-2%Zn was fatigue tested. The coating was effective at low stress levels and exhibited long life under conditions where corrosion fatigue strength was critical.  相似文献   

3.
The structure, hardness, and shear adhesion strength have been investigated for Cr3C2-NiCr cermet coatings sprayed onto a mild steel substrate by 200 kW high power plasma spraying (HPS) and high velocity oxy-fuel (HVOF) processes. Amorphous and supersaturated nickel phases form in both as-sprayed coatings. The hardness of the HVOF coating is higher than that of the HPS coating, because the HVOF coating contains more nonmelted Cr3C2 carbide particles. On heat treating at 873 K, the amorphous phase decomposes and the supersaturated nickel phase precipitates Cr3C2 carbides so that the hardness increases in the HPS coating. The hardness measured under a great load exhibits lower values compared with that measured with a small load because of cracks generated from the indentation. The ratio of the hardnesses measured with different loads can be regarded as an index indicating the coating ductility. The ductility of the HVOF coating is higher than that of the HPS coating. Adhesion strength of the HVOF coating was high compared with the HPS coating. The adhesion of the coatings is enhanced by heat treating at 1073 K, and that of the HVOF coating is over 350 MPa.  相似文献   

4.
为了探究MnCo2O4尖晶石涂层作为固体氧化物燃料电池的金属连接体表面涂层的性能,使用溶胶-凝胶法制备出纯净的前驱体粉末,再使用电泳沉积方法制备出致密的MnCo2O4尖晶石涂层,利用SEM、EDS和XRD等表征手段观察分析MnCo2O4尖晶石涂层的相结构和微观组织形貌。采用“四探针法”测量MnCo2O4尖晶石涂层800℃氧化200h前后的面比电阻使用拉拔法完成不同界面粗糙度下的涂层结合强度测试,并用有限元仿真加以验证。结果显示,MnCo2O4尖晶石涂层结构均匀,致密度较好。相较于AISI430不锈钢基体来说,在800℃空气中氧化200h,抗氧化性提高了接近3倍。且中温面比电阻小于SOFC金属连接体规定的极限值。此外,基体表面粗糙度可以有效的增加涂层与基体的机械咬合作用,但同时也会导致应力集中,出现缺陷,从而降低了结合强度。  相似文献   

5.
A thermally grown oxide (TGO) layer is formed at the interface of bond coat/top coat. The TGO growth during thermal exposure in air plays an important role in the spallation of the ceramic layer from the bond coat. High temperature oxidation resistance of four types of atmospheric plasma sprayed TBCs was investigated. These coatings were oxidized at 1000 °C for 24, 48 and 120 h in a normal electric furnace under air atmosphere. Microstructural characterization showed that the growth of the TGO layer in nano NiCrAlY/YSZ/nano Al2O3 coating is much lower than in other coatings. Moreover, EDS and XRD analyses revealed the formation of Ni(Cr,Al)2O4 mixed oxides (as spinel) and NiO onto the Al2O3 (TGO) layer. The formation of detrimental mixed oxides (spinels) on the Al2O3(TGO) layer of nano NiCrAlY/YSZ/nano Al2O3 coating is much lower compared to that of other coatings after 120 h of high temperature oxidation at 1000 °C.  相似文献   

6.
Ti28.35Al63.4Nb8.25 (at.%) intermetallic compound coatings were sprayed onto 316 L stainless steel substrates by HVOF processes using various parameters. By varying the grit blasting pressure between 0.11 and 0.55 MPa, the effects of substrate roughness on the adhesion of TiAlNb thermal sprayed coatings were investigated. The microstructure, porosity and microhardness of the coatings were characterized by SEM, XRD, Image Analysis and Vickers hardness analysis. The tensile adhesion test (TAT) specified by ASTM C 633-79 was used to measure the tensile bonding strength of the coating. The results show that the coatings with substrate roughness of 8.33 μm displayed the best combined strength. TiAlNb coatings had a lamellar microstructure with different spraying parameters. The porosity, bonding strength, microhardness of coatings were assessed in relation to the spraying processes. The thickness of bond coat on the bond strength of coatings was also discussed.  相似文献   

7.
The penetration phenomena of liquid manganese (Mn) alloy into porous ZrO2 (8 vvt % Y2O3) coating plasma sprayed on SS400 steel substrate was studied by heating in a vacuum atmosphere. The improvement in mechanical properties of the coating by heat treatment with liquid Mn alloys was examined. Liquid Mn alloys, such as Mn-Cu, Mn-Sn, and Mn-In, rapidly penetrated the coating and formed a chemical bond between the coating and the substrate. The densification of the ZrO2 coating occurred when ZrO2 particles were sintered with liquid Mn alloys that penetrated the porous coating. The dense coating was free of porosity, and its hardness increased after heat treatment with Mn alloys, compared with assprayed ZrO2 coating. Moreover, the fracture toughness of the coating reached the same levels as those of sintered yttria-stabilized PSZ.  相似文献   

8.
Arc-sprayed Al, Zn, and plasma-sprayed Al, Zn, Ni3Al and Cu were deposited on carbon fiber reinforced polyimide substrate as bond coats for erosion and thermal resistant coating. Shear adhesion strength of different materials was tested, and microstructures of bond coats were analyzed with scanning electron microscope. The results showed that the substrate was thermally damaged when Ni3Al or Cu was deposited as bond coat, and the bond coat was delaminated from the substrate. Arc-sprayed and plasma-sprayed Al and Zn could be used as bond coat materials. For Zn as bond coat material, depositing method had little influence on shear adhesion strength. While for Al as bond coat material, plasma spray was superior to arc spray. Preheating could improve shear adhesion strength with plasma sprayed Al as bond coat. The maximum shear adhesion strength obtained in this paper was 14.15 MPa, with plasma-sprayed Al as bond coat, and the preheating temperature was 250 °C.  相似文献   

9.
Arc ion plating had been employed on a cobalt-base superalloy K40S to deposit a NiCrAlYSi coating to improve its oxidation resistance at 1323-1423 K in air. The K40S superalloy had poor oxidation resistance because a non-protective and easy spalling surface oxides scale mixed of Cr2O3 and CoCr2O4 was formed on its surface. After coated with NiCrAlYSi coating, a dense and protective α-Al2O3 scale was formed on the coating and excellently improved its oxidation resistance. Inter-diffusion obviously occurred between the coating and the substrate K40S superalloy in oxidation process, which resulted from Co atoms in K40S outwards diffused. A richen Cr and W carbides inter-diffusion layer was formed, which could acted as a diffusion barrier that barred Al atoms in coating inwards diffusion. Though the NiCrAlYSi changed into NiCoCrAlYSi during oxidation process, it still possessed a good oxidation resistance and had a considerable long-term life.  相似文献   

10.
高温树脂基复合材料防护用轻质陶瓷涂层的制备   总被引:4,自引:2,他引:2  
研究了采用Ni-3%Al粉末和纯铝、纯锌作为打底材料在碳纤维增强聚酰亚胺复合材料(PMC)基体上制备Al2O3轻质陶瓷防护涂层的可行性,测试了涂层的剪切结合强度和耐热循环性能。结果表明,等离子喷涂Ni-3%Al粉末会对PMC基体造成破坏,不适合于作为PMC基体上的打底材料。电弧喷铝也会对基体造成一定程度的破坏,结合强度和耐热循环性能较低。采用低电压、小电流电弧喷锌,可以获得和基体结合良好打底涂层,涂层剪切结合强度达10.45MPa。在其上制备的Al2O3陶瓷防护涂层耐热循环性能良好。  相似文献   

11.
A Ni-20Cr coating was deposited on a molybdenum substrate by laser cladding. The observation of the microstructure by SEM demonstrates that the coating is free of cracks and pores, and metallurgically bonded to the substrate. XRD and EDS analysis results show that some dilution occurs at the coating/substrate interface and that Mo combines with Ni-20Cr, to form a Ni-Cr-Mo alloy coating with slight oxidation. The oxidation behavior of the coating indicates that the laser clad Ni-20Cr coating can effectively prevent oxidation of molybdenum at 600 °C in air. The oxide scale formed on the coating surface by oxidation in air is composed of NiO, Cr2O3 and NiMoO4.  相似文献   

12.
Compact and smooth iridium coating was obtained on the surface of the rhenium substrate by electrodeposition from molten salts of chlorides at the temperature of 600 °C in the air. The deposition rate is about 25 μm/h at cathodic current density of 25 mA/cm2. The iridium coating has a columnar structure with preferential growth orientation of <111>. The coating/substrate interface exhibits excellent adherence with no evidence of delamination, cracks, or other defects. No obvious diffusion layer is found within the as-deposited coating. The microhardness of the coating is 442 kg/mm2 and the bond strength between the coating and substrate is higher than 16 MPa.  相似文献   

13.
Oxide films have been produced on AM60B magnesium alloy by micro-arc anodic oxidation in an environmentally friendly alkaline solution, with and without addition of nanoparticles (TiO2, ZrO2 and Al2O3). Because of the anodic oxide porosity, inherent in the sparking process, organo-functional silanes top coat has been applied to seal pores and cracks, and achieve an efficient protective coating system. The surface and cross-section morphology of samples were analyzed by Scanning Electron Microscopy (SEM) coupled with Energy Dispersive Spectroscopy (EDS). Scratch tests were performed for evaluating the adhesion strength and scratch hardness of the anodic oxides to the AM60B substrate. The corrosion resistance of both anodic oxides and oxide/silane composite coatings was evaluated in 0.6 M NaCl solution using potentiodynamic polarization tests. The addition of nanoparticles to the anodizing solution doesn't affect significantly the corrosion resistance in comparison with anodic oxides produced in nanoparticles free solutions. Conversely, the adhesion strength and scratch hardness of the anodic oxides to the substrate is quite scattered, and it is higher for the samples produced in ZrO2 and in Al2O3 rich solutions. For this reason specimens anodized in ZrO2 and Al2O3 containing solutions were chosen for silane deposition. Two silanes were used, namely octyltrimethoxysilane (OSi) and 1, 2-bis [triethoxysilyl] ethane (BTSE). The anodizing treatment carried out in oxides nanoparticles containing solutions (ZrO2 or Al2O3), followed by a silane top coat treatment performed using OSi precursor, is an interesting way, suitable for industrial applications, to synthesize adherent corrosion resistant coatings on magnesium alloy AM60B in a short process time.  相似文献   

14.
The mechanical properties and related performance of thermally sprayed ceramic coatings are degraded by their relatively low adhesion and cohesion resulting from the limited bonding at substrate/splat interface and splat/splat interface. In this study, the influence of high strength adhesive infiltration on the microstructure and erosion performance of plasma-sprayed Al2O3 coatings was investigated to understand the improving mechanism of adhesion and cohesion through heterogeneous modification of nonbonded interfaces. Element distribution maps proved that the adhesive can be infiltrated from the coating surface to the coating/substrate interface through the inter-connected open pores including in-plane nonbonded area and microcracks in splats. Both adhesion and cohesion can be significantly improved by the heterogeneous modification of nonbonded lamellar interfaces of both splat/splat and splat/substrate through adhesive infiltration. The adhesive strength of the coating was increased from several MPa to ~50 MPa after adhesive infiltration. The erosion resistance at a large particle jet angle was improved by a factor of 3 due to the significant improvement of the lamellar cohesion, although the erosion resistance at a small particle jet angle was not significantly influenced.  相似文献   

15.
This article details the down-selection procedure for thermally sprayed coatings for aluminum injection mould tooling. A down-selection metric was used to rank a wide range of coatings. A range of high-velocity oxyfuel (HVOF) and atmospheric plasma spray (APS) systems was used to identify the optimal coating-process-system combinations. Three coatings were identified as suitable for further study; two CrC NiCr materials and one Fe Ni Cr alloy. No APS-deposited coatings were suitable for the intended application due to poor substrate adhesion (SA) and very high surface roughness (SR). The DJ2700 deposited coating properties were inferior to the coatings deposited using other HVOF systems and thus a Taguchi L18 five parameter, three-level optimization was used to optimize SA of CRC-1 and FE-1. Significant mean increases in bond strength were achieved (147±30% for FE-1 [58±4 MPa] and 12±1% for CRC-1 [67±5 MPa]). An analysis of variance (ANOVA) indicated that the coating bond strengths were primarily dependent on powder flow rate and propane gas flow rate, and also secondarily dependent on spray distance. The optimal deposition parameters identified were: (CRC-1/FE-1) O2 264/264 standard liters per minute (SLPM); C3H8 62/73 SLPM; air 332/311 SLPM; feed rate 30/28 g/min; and spray distance 150/206 mm.  相似文献   

16.
Ceramic coating was prepared on Q235 carbon steel by plasma electrolytic oxidation (PEO). The microstructure of the coating including phase composition, surface and cross-section morphology were studied by X-ray diffraction (XRD), Fourier transform infrared spectroscope (FTIR) and scanning electron microscopy (SEM). The corrosion behavior of the coating was evaluated in 3.5% NaCl solution through electrochemical impedance spectra (EIS), potentiodynamic polarization and open-circuit potential (OCP) techniques. The bonding strength between Q235 carbon steel substrate and the ceramic coating was also tested. The results indicated that PEO coating is a composite coating composed of FeAl2O4 and Fe3O4. The coating surface is porous and the thickness is about 100 μm. The bonding strength of the coating is about 19 MPa. The corrosion tests showed that the corrosion resistance of Q235 carbon steel could be greatly improved with FeAl2O4-Fe3O4 composite coating on its surface.  相似文献   

17.
Ni3Al metallic powder was prepared by the mechanical mixing of pure nickel and aluminium powders and deposited on a Ni‐base superalloy namely Superni 75 by the shrouded plasma spray process. Hot corrosion behaviour of Ni3Al coated and uncoated superalloy specimens was evaluated in a simulated environment of fossil fuel boilers comprising of Na2SO4–60%V2O5 by accelerated corrosion tests. The accelerated testing was done under cyclic conditions for 50 cycles, with each cycle consisting of 1 h heating in the silicon carbide furnace and cooling for 20 min in air. The coated superalloy was also subjected to air oxidation for 50 cycles to get an idea about its oxidation behaviour and adherence of the Ni3Al coating and its oxide scale with the substrate superalloy. The oxide scales were characterised by X‐ray diffraction (XRD), scanning electron microscopy/energy dispersive X‐ray (SEM/EDAX) analyses and electron probe microanalysis (EPMA). The uncoated superalloy suffered an accelerated corrosion in the form of spallation of its oxide scale, whereas the oxide scale formed on the Ni3Al coated specimen was intact during the air as well as the molten salt oxidation. Furthermore, the coating was found successful in preventing the internal oxidation of the substrate superalloy. The coating maintained its adherence to the substrate superalloy during the exposure to both the environments of the study. The XRD analysis revealed the presence of oxides like Al2O3, NiO and NiAl2O4 in the oxide scale of the coated superalloy. The XRD results were further supported by the SEM/EDAX and EPMA analyses.  相似文献   

18.
The poor adhesion of Ni-P coatings on sintered NdFeB magnets imposes a great challenge in industrial applications. In this work, a kind of Zn phosphate film was fabricated on NdFeB sintered magnets surface to enhance the adhesion strength between the Ni-P coating and the substrate. The results showed that the adhesion strength between magnet surface and Ni-P coating was enhanced from 2.3 MPa to 10.1 MPa after Zn phosphating treatment. The addition of the phosphate created a protective layer over the substrate and inhibited the dissolving of the substrate and generation of H2, which deteriorated the mechanical strength of the substrate and led to lower adhesion strength. On the other hand, the pores and micro-cracks on the phosphate film enhanced the interfacial contact area as well as reinforced the anchoring of Ni-P grains through the pinning effect, thus leading to high adhesion strength between Ni-P and magnet substrate. Phosphating solution composition and process were also optimized by orthogonal experiments in this work.  相似文献   

19.
The interface reaction between a nickel-base, self-fluxing alloy coating and a steel substrate has been investigated to examine the formation of “pores,” which are observed along the interface of used boiler tubes. It was found that lumpy precipitates form along the interface instead of pores after heating at high temperatures and that the precipitates are of Fe2B boride. The adhesion strength of the coating is not decreased by the formation of Fe2B precipitates along the interface because of the increase of the adhesion due to interdiffusion.  相似文献   

20.
The oxidation of electron beam physical vapour deposited thermal barrier coatings with a Pt-enriched γ-Ni + γ′-Ni3Al bond coat was investigated. Due to the growth of the thermally grown oxide (TGO), γ-Ni formed underneath the TGO as a result of Al depletion. Phase characterisation by X-ray diffraction, as well as microstructural observations, indicated that a NiAl2O4 spinel phase formed at the TGO/bond coat interface after prolonged oxidation. It is proposed that the formation of spinel occurs when local cracks present at the interface and the underlying bond coat is Al-depleted. The cracks provide a direct path for oxygen and nickel oxide forms at the bond coat surface. With further oxidation, the spinel forms at the interface through solid state reaction between the TGO and nickel oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号