首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
本文以磷酸氢二铵和钼酸铵为原料,经氢等离子体法还原制备Ni-MoP催化剂;催化剂经XRD、SEM分析表征;在固定床反应器进行二苯并噻吩加氢脱硫,实验结果表明Ni-MoP催化剂的DBT的转化率达到50.1%,BP的选择性达35.6%,CHB的选择性达19.9%。  相似文献   

3.
4.
为进一步考察催化剂RSDS-1的选择性加氢脱硫性能,中国石油化工股份有限公司长岭分公司对RSDS装置进行了催化裂化全馏分汽油加氢试验。结果表明,在反应器上床层平均人口温度260.1℃、床层平均温度270.8℃、空速425h^-1、氢油体积比422:1、反应压力1.40MPa的条件下,产品硫质量分数为69ug/g,研究法辛烷值损失07~2.0,质量满足欧Ⅲ标准的规定。  相似文献   

5.
6.
柴油深度加氢脱硫催化剂性能研究   总被引:1,自引:0,他引:1  
为了满足炼油企业生产符合欧Ⅳ及欧Ⅴ排放标准清洁柴油的需要,针对炼油企业柴油组分构成中的直馏柴油、催化柴油及焦化柴油等不同原料油的性质及其反应途径的不同,通过改性氧化铝载体的成功开发及活性组分与载体相互作用的深入研究,开发了分别适合直馏柴油、二次加工柴油及直馏柴油与二次加工柴油混合油超深度脱硫的FHUDS系列催化剂。该系列催化剂已在国内20多套柴油加氢装置成功应用,满足了炼油企业生产欧Ⅲ及欧Ⅳ标准清洁柴油的需要,并为上海等地区柴油质量升级提供了良好的技术支撑。  相似文献   

7.
以相对分子质量为600的聚乙二醇(PEG600)为分散剂、硅藻土为黏结剂对Ni-Mo-W非负载型催化剂进行了改性,采用XRD、N_2吸附-脱附、NH_3-TPD、HRTEM等方法对改性前后的催化剂进行表征,并考察了催化剂的加氢脱硫(HDS)性能。实验结果表明,PEG600使非负载型催化剂的颗粒尺寸减小,孔隙结构更发达,强酸中心数量增多,活性相平均堆叠层数达4.3层,且活性相分布更均匀。Ni-Mo-W-PEG600的HDS活性显著提高,340℃下最高脱硫率为99.6%,加氢柴油硫含量仅为18.6μg/g。加入硅藻土后的Ni-Mo-W-PEG600-DE的比表面积进一步增大,机械强度由4.2 N/mm提升至16.2 N/mm,催化剂的最高脱硫率可达99.8%。  相似文献   

8.
对轻烃分馏装置的液化气胺法脱硫装置无法长周期稳定运行问题进行了分析,发现主要原因是胺液发泡和液化气铜片腐蚀不达标。本文针对这两个主要原因进行了详细分析,通过分析得出:引起胺液发泡的主要原因是脱硫系统脏、液化气含甲醇、胺液降解导致热稳定盐积聚、操作波动;导致脱硫后液化气铜片腐蚀不达标原因是胺液夹带进入液化气、液化气产品中存在一定量的有机硫和单质硫未脱除。同时,针对存在的问题提出了相应的解决措施。  相似文献   

9.
10.
催化裂化汽油在Mo—Co型催化剂上的加氢脱硫反应研究   总被引:1,自引:0,他引:1  
采用Mo—Co型轻质油加氢精制催化剂,在固定床微反装置上考察了催化裂化(FCC)汽油加氢脱硫的反应规律。结果表明,FCC汽油在低温下就能发生脱硫反应,同时伴随着硫醇的生成;且高的氢分压有利于硫醇的生成,在低氢分压下,硫醇的生成速率随着反应温度的升高先增大后减小;加氢产品窄馏分中的硫含量随着反应温度的升高基本呈降低趋势,不同的是60~90℃馏分中的硫含量先增大后减小。  相似文献   

11.
介绍了催化汽油加氢脱硫催化剂选择性调控(RSAT)技术在中国石化青岛石油化工有限责任公司60万t/a催化汽油加氢脱硫装置上的工业应用情况。装置经过18个月的长周期稳定运转,工业标定结果表明,以催化裂化MIP(多产异构烷烃)汽油为原料(硫含量690~849μg/g),生产硫含量小于10μg/g的国Ⅴ汽油时,产品汽油研究法辛烷值(RON)损失约1.5个单位,收率大于99.5%,在深度脱硫条件下产品汽油RON损失较调控前减少约0.4个单位。  相似文献   

12.
催化裂化重汽油加氢脱硫工艺研究   总被引:2,自引:0,他引:2  
以馏程大于70℃的催化裂化重汽油为原料,在装填OTC—M型催化剂的30mL微型固定床反应评价装置上,进行加氢脱硫的工艺研究。结果表明,优化的加氢条件为:反应温度260℃、反应压力1.6MPa、氢油体积比300:1、进料空速4h^-1;在此工艺条件下,重汽油的硫含量由272.35μg/g降至124.78μg/g,脱硫率达54.18%。  相似文献   

13.
在水热法制备Ni-Mo-W非负载型催化剂过程中一次性加入十二烷基苯磺酸钠(SDBS)助剂,得到Ni-Mo-W-SDBS非负载型催化剂。利用XRD、BET、N_2吸附-脱附、NH3-TPD、SEM等手段分析了催化剂的结构和性能,并考察了其加氢脱硫活性。表征结果显示,Ni-Mo-W-SDBS非负载型催化剂的颗粒尺寸较小、金属分散性好、孔隙结构发达、弱酸中心数量多,活性组分分布均匀。SDBS适宜的添加量为30%(基于Mo的物质的量)。Ni-Mo-W-SDBS-30%对FCC柴油的脱硫率可达99.8%,所得加氢柴油的残硫量仅为12μg/g,十六烷值可达48.6。  相似文献   

14.
为了降低催化剂制造成本,有必要研究催化剂生产过程物料回用及废催化剂合理利用技术。通过在柴油加氢脱硫催化剂制备过程中掺入不同比例的废催化剂,考察废催化剂掺入量对催化剂性能的影响。研究结果表明,随着废催化剂粉末掺入量的增加,载体和对应催化剂的强度、比表面积、孔容和平均孔径都呈下降的趋势。活性评价表明,催化剂制备过程中掺入不大于5%的同类废催化剂粉末,对催化剂加氢脱硫和加氢脱氮活性没有明显的影响;当掺入量继续增加时,加氢脱硫活性损失严重。因此,为了降低催化剂制造成本并减少废催化剂处理带来的环境污染,建议在催化剂制备过程中将掺入废催化剂的比例控制在5%以下。  相似文献   

15.
水蒸气转化制氢,硫是最常见的转化催化剂毒物,因此在进人转化反应之前加ZnO脱硫的效果直接影响制氢装置的正常生产。分析了原料中杂质对脱硫的影响,其中O2,CO2,CO等杂质在加氢过程中生成水,从而影响ZnO的脱H2S的平衡吸收反应,从而对加氢脱硫效果产生影响;氨则破坏加氢催化剂的活性中心,使其有机硫无法转化为无机硫;而铁锈则是生成的金属硫化物,带人转化部分,在转化的条件下还原成硫化氢,使转化催化剂发生硫中毒。实际生产证明,原料加氢脱硫效果好,下游预转化和转化催化剂的活性高,就能保证制氢装置长周期运行,所以应做好炼油厂制氢原料的选择,避免带人以上杂质。  相似文献   

16.
17.
FCC汽油选择性加氢脱硫工艺优化设计   总被引:2,自引:0,他引:2  
应用中国石化抚顺石油化工研究院(FRIPP)新开发的催化裂化(FCC)汽油选择性深度加氢脱硫技术(OCT-MD):先将FCC汽油脱臭后切割为轻、重两个馏分,与FCC汽油直接先切割相比,轻馏分的总硫质量分数降低45%左右,硫醇硫质量分数≤10μg/g,RON损失较小,可以大大降低重馏分加氢脱硫深度,减少烯烃过度饱和造成的辛烷值损失。重馏分加氢脱硫反应采用低压操作方案有利于减少产品辛烷值损失,反应器入口压力最好不大于2.0MPa。采用二乙醇胺法处理后循环氢H2S质量分数≤100μg/g,不但可以提高脱硫率,还可大大减轻硫化氢与未反应的烯烃重排生成大分子硫醇的程度。根据中试和模拟计算结果,OCT—MD技术第一次在湛江东兴石油企业有限公司新建的FCC汽油选择性深度加氢脱硫装置上使用。  相似文献   

18.
Prime-G^+催化裂化汽油加氢脱硫技术的应用   总被引:3,自引:0,他引:3  
为使出厂汽油硫含量满足北京市地方标准DB11/238-2007要求,中国石油天然气股份有限公司大港石化分公司国内首家采用法国Axens公司Prime-G^+技术,新建处理能力为0.75Mt/a催化裂化汽油加氢脱硫装置,并于2008年5月投产。工业运行实践表明,装置操作简便,运行平稳,加工处理硫质量分数不超过120μg/g的催化裂化汽油,处理后硫质量分数为19μg/g,辛烷值损失为0.4。  相似文献   

19.
采用等体积浸渍法,以氧化铝为载体,钴、钼和镍为活性金属组分,制备了新型催化裂化汽油加氢脱硫催化剂。结果表明,与单独加氢脱硫工艺(选用PHG-111加氢脱硫催化剂)相比,采用加氢脱硫-超深度脱硫(选用新型加氢脱硫催化剂)组合工艺后,产品硫含量由29.5μg/g降至11.9μg/g,烯烃基本不损失,硫醇硫含量下降7.9μg/g,选择性高达98.5%。该催化剂与PHG-111加氢脱硫催化剂有机组合后,可用于生产硫含量低于10μg/g的清洁汽油调和组分。  相似文献   

20.
Hydrothermal synthesis with ammonium heptamolybdate and thiourea as precursors was used to obtain an unsupported MoS2 catalyst. The catalyst was obtained in sulfide state directly at mild reaction conditions (i.e., 180°C during 5 h). After catalyst was obtained, it was characterized through nitrogen physisorption, transmission electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Catalytic evaluation was carried out in a batch reactor at 350°C, 55 bar of hydrogen pressure, 750 rpm, and 3 h of reaction time using straight-run gas oil (SRGO) as feedstock. A commercial CoMo/Al2O3 catalyst was used for comparison of activity. The synthesized catalyst was slightly more active toward SRGO hydrodesulfurization than commercial one keeping constant the sulfur removal after two runs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号